Holographic duals of five-dimensional SCFTs on a Riemann surface

  • Ibrahima BahEmail author
  • Achilleas Passias
  • Peter Weck
Open Access
Regular Article - Theoretical Physics


We study the twisted compactifications of five-dimensional Seiberg SCFTs, with \( {\mathrm{SU}}_{\mathrm{\mathcal{M}}}(2)\times {E}_{N_f}+1 \) flavor symmetry, on a generic Riemann surface that preserves four supercharges. The five-dimensional SCFTs are obtained from the decoupling limit of N D4-branes probing a geometry of Nf < 8 D8-branes and an O8-plane. In addition to the R-symmetry, we can also twist the flavor symmetry by turning on background flux on the Riemann surface. In particular, in the string theory construction of the five-dimensional SCFTs, the background flux for the SU(2) has a geometric origin, similar to the topological twist of the R-symmetry. We argue that the resulting low-energy three-dimensional theories describe the dynamics on the world-volume of the N D4-branes wrapped on the Riemann surface in the O8/D8 background. The Riemann surface can be described as a curve in a Calabi-Yau three-fold that is a sum of two line bundles over it. This allows for an explicit construction of AdS4 solutions in massive IIA supergravity dual to the world-volume theories, thereby providing strong evidence that the three-dimensional SCFTs exist in the low-energy limit of the compactification of the five-dimensional SCFTs. We compute observables such as the free energy and the scaling dimensions of operators dual to D2-brane probes; these have non-trivial dependence on the twist parameter for the U(1) in SU(2). The free energy exhibits the N5/2 scaling that is emblematic of five-dimensional SCFTs.


AdS-CFT Correspondence Brane Dynamics in Gauge Theories D-branes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Gaiotto and J. Maldacena, The Gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].
  8. [8]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from M5-Branes on Riemann Surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].ADSzbMATHGoogle Scholar
  10. [10]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    I. Bah, Quarter-BPS AdS 5 solutions in M-theory with a T 2 bundle over a Riemann surface, JHEP 08 (2013) 137 [arXiv:1304.4954] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    I. Bah, AdS5 solutions from M5-branes on Riemann surface and D6-branes sources, JHEP 09 (2015) 163 [arXiv:1501.06072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdS 5 solutions of massive IIA supergravity, JHEP 06 (2015) 195 [arXiv:1502.06620] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    I. Bah, A. Passias and A. Tomasiello, AdS 5 compactifications with punctures in massive IIA supergravity, JHEP 11 (2017) 050 [arXiv:1704.07389] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. Karndumri, Twisted compactification of N = 2 5D SCFTs to three and two dimensions from F(4) gauged supergravity, JHEP 09 (2015) 034 [arXiv:1507.01515] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  17. [17]
    A. Brandhuber and Y. Oz, The D4 − D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    N. Bobev and P.M. Crichigno, Universal RG Flows Across Dimensions and Holography, JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    C. Lawrie, D. Martelli and S. Schäfer-Nameki, Theories of Class F and Anomalies, JHEP 10 (2018) 090 [arXiv:1806.06066] [INSPIRE].
  20. [20]
    O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS 6 duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Passias, D. Prins and A. Tomasiello, A massive class of \( \mathcal{N} \) = 2 AdS 4 IIA solutions, JHEP 10 (2018) 071 [arXiv:1805.03661] [INSPIRE].
  23. [23]
    K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L.J. Romans, The F(4) Gauged Supergravity in Six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C. Núñez, I.Y. Park, M. Schvellinger and T.A. Tran, Supergravity duals of gauge theories from F(4) gauged supergravity in six-dimensions, JHEP 04 (2001) 025 [hep-th/0103080] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Karndumri, Holographic RG flows in six dimensional F(4) gauged supergravity, JHEP 01 (2013) 134 [Erratum ibid. 06 (2015) 165] [arXiv:1210.8064] [INSPIRE].
  27. [27]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].
  28. [28]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    I. Bah, M. Gabella and N. Halmagyi, Punctures from probe M5-branes and \( \mathcal{N} \) = 1 superconformal field theories, JHEP 07 (2014) 131 [arXiv:1312.6687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  31. [31]
    C. Beem and A. Gadde, The N = 1 superconformal index for class S fixed points, JHEP 04 (2014) 036 [arXiv:1212.1467] [INSPIRE].
  32. [32]
    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP 04 (2018) 103 [arXiv:1801.04036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    P.M. Crichigno, D. Jain and B. Willett, 5d Partition Functions with A Twist, JHEP 11 (2018) 058 [arXiv:1808.06744] [INSPIRE].
  34. [34]
    S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions and holography, JHEP 11 (2018) 119 [arXiv:1808.06626] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    L. Martucci, Electrified branes, JHEP 02 (2012) 097 [arXiv:1110.0627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    I. Bah, M. Gabella and N. Halmagyi, BPS M5-branes as Defects for the 3d-3d Correspondence, JHEP 11 (2014) 112 [arXiv:1407.0403] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations