# Large *N* phase transition in \( T\overline{T} \) -deformed 2*d* Yang-Mills theory on the sphere

Open Access

Regular Article - Theoretical PhysicsFirst Online:

- 6 Downloads

## Abstract

We study the partition function of a \( T\overline{T} \) -deformed version of Yang-Mills theory on the two-sphere. We show that the Douglas-Kazakov phase transition persists for a range of values of the deformation parameter, and that the critical area is lowered. The transition is of third order and also induced by instantons, whose contributions we characterize.

## Keywords

Field Theories in Lower Dimensions Matrix Models Nonperturbative Effects Download
to read the full article text

## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]A.B. Zamolodchikov,
*Expectation value of composite field*\( T\overline{T} \)*in two-dimensional quantum field theory*, hep-th/0401146 [INSPIRE]. - [2]F.A. Smirnov and A.B. Zamolodchikov,
*On space of integrable quantum field theories*,*Nucl. Phys.***B 915**(2017) 363 [arXiv:1608.05499] [INSPIRE]. - [3]A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)
*-deformed*2*D quantum field theories*,*JHEP***10**(2016) 112 [arXiv:1608.05534] [INSPIRE]. - [4]S. Dubovsky, V. Gorbenko and M. Mirbabayi,
*Asymptotic fragility, near AdS*_{2}*holography and*\( T\overline{T} \),*JHEP***09**(2017) 136 [arXiv:1706.06604] [INSPIRE]. - [5]S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, \( T\overline{T} \)
*partition function from topological gravity*,*JHEP***09**(2018) 158 [arXiv:1805.07386] [INSPIRE]. - [6]A. Giveon, N. Itzhaki and D. Kutasov, \( T\overline{T} \)
*and LST*,*JHEP***07**(2017) 122 [arXiv:1701.05576] [INSPIRE]. - [7]A. Giveon, N. Itzhaki and D. Kutasov,
*A solvable irrelevant deformation of AdS*_{3}*/CFT*_{2},*JHEP***12**(2017) 155 [arXiv:1707.05800] [INSPIRE]. - [8]S. Datta and Y. Jiang, \( T\overline{T} \)
*deformed partition functions*,*JHEP***08**(2018) 106 [arXiv:1806.07426] [INSPIRE]. - [9]O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov,
*Modular invariance and uniqueness of*\( T\overline{T} \)*deformed CFT*, arXiv:1808.02492 [INSPIRE]. - [10]J. Cardy,
*The*\( T\overline{T} \)*deformation of quantum field theory as random geometry*,*JHEP***10**(2018) 186 [arXiv:1801.06895] [INSPIRE]. - [11]R. Conti, S. Negro and R. Tateo,
*The*\( T\overline{T} \)*perturbation and its geometric interpretation*, arXiv:1809.09593 [INSPIRE]. - [12]J. Cardy, \( T\overline{T} \)
*deformations of non-Lorentz invariant field theories*, arXiv:1809.07849 [INSPIRE]. - [13]R. Conti, L. Iannella, S. Negro and R. Tateo,
*Generalised Born-Infeld models, Lax operators and the*\( T\overline{T} \)*perturbation*,*JHEP***11**(2018) 007 [arXiv:1806.11515] [INSPIRE]. - [14]S. Cordes, G.W. Moore and S. Ramgoolam,
*Lectures on*2*D Yang-Mills theory, equivariant cohomology and topological field theories*,*Nucl. Phys. Proc. Suppl.***41**(1995) 184 [hep-th/9411210] [INSPIRE]. - [15]M.R. Douglas and V.A. Kazakov,
*Large N phase transition in continuum QCD in two-dimensions*,*Phys. Lett.***B 319**(1993) 219 [hep-th/9305047] [INSPIRE]. - [16]D.J. Gross and A. Matytsin,
*Instanton induced large N phase transitions in two-dimensional and four-dimensional QCD*,*Nucl. Phys.***B 429**(1994) 50 [hep-th/9404004] [INSPIRE]. - [17]A.A. Migdal,
*Recursion equations in gauge theories*,*Sov. Phys. JETP***42**(1975) 413 [*Zh. Eksp. Teor. Fiz.***69**(1975) 810] [INSPIRE]. - [18]P. Menotti and E. Onofri,
*The action of*SU(*N*)*lattice gauge theory in terms of the heat kernel on the group manifold*,*Nucl. Phys.***B 190**(1981) 288 [INSPIRE]. - [19]B.E. Rusakov,
*Loop averages and partition functions in*U(*N*)*gauge theory on two-dimensional manifolds*,*Mod. Phys. Lett.***A 5**(1990) 693 [INSPIRE]. - [20]M.R. Douglas,
*Conformal field theory techniques in large N Yang-Mills theory*, in*NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory*, Cargese, France, 12-21 May 1993 [hep-th/9311130] [INSPIRE]. - [21]J.A. Minahan and A.P. Polychronakos,
*Classical solutions for two-dimensional QCD on the sphere*,*Nucl. Phys.***B 422**(1994) 172 [hep-th/9309119] [INSPIRE]. - [22]D.J. Gross and E. Witten,
*Possible third order phase transition in the large N lattice gauge theory*,*Phys. Rev.***D 21**(1980) 446 [INSPIRE]. - [23]S.R. Wadia,
*N*= ∞*phase transition in a class of exactly soluble model lattice gauge theories*,*Phys. Lett.***B 93**(1980) 403 [INSPIRE]. - [24]
- [25]M. Caselle, A. D’Adda, L. Magnea and S. Panzeri,
*Two-dimensional QCD on the sphere and on the cylinder*, in*Proceedings, Summer School in High-energy physics and cosmology*, Trieste, Italy, 15 June-31 July 1992, pg. 0245 [hep-th/9309107] [INSPIRE]. - [26]D.J. Gross,
*Two-dimensional QCD as a string theory*,*Nucl. Phys.***B 400**(1993) 161 [hep-th/9212149] [INSPIRE]. - [27]D.J. Gross and W. Taylor,
*Two-dimensional QCD is a string theory*,*Nucl. Phys.***B 400**(1993) 181 [hep-th/9301068] [INSPIRE]. - [28]W. Donnelly and G. Wong,
*Entanglement branes in a two-dimensional string theory*,*JHEP***09**(2017) 097 [arXiv:1610.01719] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [29]A.C. Pipkin,
*A course on integral equations*,*Texts Appl. Math.***9**, Springer, New York, U.S.A. (1991).Google Scholar - [30]N.I. Muskhelishvili,
*Singular integral equations*, Noordhoff, The Netherlands (1977).Google Scholar - [31]D. Jafferis and J. Marsano,
*A DK phase transition in q-deformed Yang-Mills on S*^{2}*and topological strings*, hep-th/0509004 [INSPIRE]. - [32]R.J. Szabo and M. Tierz,
*q-deformations of two-dimensional Yang-Mills theory: classification, categorification and refinement*,*Nucl. Phys.***B 876**(2013) 234 [arXiv:1305.1580] [INSPIRE]. - [33]E. Witten,
*On quantum gauge theories in two-dimensions*,*Commun. Math. Phys.***141**(1991) 153 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [34]E. Witten,
*Two-dimensional gauge theories revisited*,*J. Geom. Phys.***9**(1992) 303 [hep-th/9204083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [35]M. Blau and G. Thompson,
*Derivation of the Verlinde formula from Chern-Simons theory and the G/G model*,*Nucl. Phys.***B 408**(1993) 345 [hep-th/9305010] [INSPIRE]. - [36]M. Blau and G. Thompson,
*Lectures on*2*D gauge theories: topological aspects and path integral techniques*, in*Proceedings, Summer School in High-energy physics and cosmology*, Trieste, Italy, 14 June-30 July 1993, pg. 0175 [hep-th/9310144] [INSPIRE]. - [37]N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R.J. Szabo,
*Topological strings and large N phase transitions. I. Nonchiral expansion of q-deformed Yang-Mills theory*,*JHEP***01**(2006) 035 [hep-th/0509041] [INSPIRE]. - [38]S. Giombi and V. Pestun,
*Correlators of local operators and*1*/*8*BPS Wilson loops on S*^{2}*from*2*d YM and matrix models*,*JHEP***10**(2010) 033 [arXiv:0906.1572] [INSPIRE]. - [39]S. Giombi and V. Pestun,
*The*1*/*2*BPS ’t Hooft loops in N*= 4*SYM as instantons in*2*d Yang-Mills*,*J. Phys.***A 46**(2013) 095402 [arXiv:0909.4272] [INSPIRE]. - [40]A. Bassetto and L. Griguolo,
*Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription*,*Phys. Lett.***B 443**(1998) 325 [hep-th/9806037] [INSPIRE]. - [41]N. Drukker and D.J. Gross,
*An exact prediction of N*= 4*SUSYM theory for string theory*,*J. Math. Phys.***42**(2001) 2896 [hep-th/0010274] [INSPIRE]. - [42]B. Durhuus and P. Olesen,
*The spectral density for two-dimensional continuum QCD*,*Nucl. Phys.***B 184**(1981) 461 [INSPIRE]. - [43]J.-P. Blaizot and M.A. Nowak,
*Large N*_{c}*confinement and turbulence*,*Phys. Rev. Lett.***101**(2008) 102001 [arXiv:0801.1859] [INSPIRE]. - [44]H. Neuberger,
*Complex Burgers’ equation in*2*D*SU(*N*)*YM*,*Phys. Lett.***B 670**(2008) 235 [arXiv:0809.1238] [INSPIRE]. - [45]M.J. Crescimanno and W. Taylor,
*Large N phases of chiral QCD in two-dimensions*,*Nucl. Phys.***B 437**(1995) 3 [hep-th/9408115] [INSPIRE]. - [46]M.R. Douglas, K. Li and M. Staudacher,
*Generalized two-dimensional QCD*,*Nucl. Phys.***B 420**(1994) 118 [hep-th/9401062] [INSPIRE]. - [47]O. Ganor, J. Sonnenschein and S. Yankielowicz,
*The string theory approach to generalized*2*D Yang-Mills theory*,*Nucl. Phys.***B 434**(1995) 139 [hep-th/9407114] [INSPIRE]. - [48]A. Gadde, L. Rastelli, S.S. Razamat and W. Yan,
*The*4*d superconformal index from q-deformed*2*d Yang-Mills*,*Phys. Rev. Lett.***106**(2011) 241602 [arXiv:1104.3850] [INSPIRE]. - [49]M. Aganagic, H. Ooguri, N. Saulina and C. Vafa,
*Black holes, q-deformed*2*d Yang-Mills and non-perturbative topological strings*,*Nucl. Phys.***B 715**(2005) 304 [hep-th/0411280] [INSPIRE]. - [50]C. Beasley and E. Witten,
*Non-Abelian localization for Chern-Simons theory*,*J. Diff. Geom.***70**(2005) 183 [hep-th/0503126] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [51]J. Kallen,
*Cohomological localization of Chern-Simons theory*,*JHEP***08**(2011) 008 [arXiv:1104.5353] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [52]X. Arsiwalla, R. Boels, M. Mariño and A. Sinkovics,
*Phase transitions in q-deformed*2*D Yang-Mills theory and topological strings*,*Phys. Rev.***D 73**(2006) 026005 [hep-th/0509002] [INSPIRE].

## Copyright information

© The Author(s) 2019