Advertisement

Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings

  • Jan E. Gerken
  • Axel KleinschmidtEmail author
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics
  • 5 Downloads

Abstract

We investigate one-loop four-point scattering of non-abelian gauge bosons in heterotic string theory and identify new connections with the corresponding open-string amplitude. In the low-energy expansion of the heterotic-string amplitude, the integrals over torus punctures are systematically evaluated in terms of modular graph forms, certain non-holomorphic modular forms. For a specific torus integral, the modular graph forms in the low-energy expansion are related to the elliptic multiple zeta values from the analogous open-string integrations over cylinder boundaries. The detailed correspondence between these modular graph forms and elliptic multiple zeta values supports a recent proposal for an elliptic generalization of the single-valued map at genus zero.

Keywords

Scattering Amplitudes Superstrings and Heterotic Strings Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Terasoma, Selberg integrals and multiple zeta values, Compos. Math. 133 (2002) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. Brown, Multiple zeta values and periods of moduli spaces0,n(), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419].
  3. [3]
    O. Schlotterer and S. Stieberger, Motivic Multiple Zeta Values and Superstring Amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].
  4. [4]
    J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α -expansion of superstring trees from the Drinfeld associator, Phys. Rev. D 89 (2014) 066014 [arXiv:1304.7304] [INSPIRE].
  5. [5]
    B. Enriquez, Analogues elliptiques des nombres multizétas, Bull. Soc. Math. Fr. 144 (2016) 395 [arXiv:1301.3042].CrossRefzbMATHGoogle Scholar
  6. [6]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Broedel, N. Matthes, G. Richter and O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes, J. Phys. A 51 (2018) 285401 [arXiv:1704.03449] [INSPIRE].
  8. [8]
    E. D’Hoker, M.B. Green, Ö. Gürdoğan and P. Vanhove, Modular Graph Functions, Commun. Num. Theor. Phys. 11 (2017) 165 [arXiv:1512.06779] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M.B. Green and P. Vanhove, The low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev. D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].
  10. [10]
    M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP 02 (2008) 020 [arXiv:0801.0322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one Type II superstring low energy expansion, JHEP 08 (2015) 041 [arXiv:1502.06698] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. D’Hoker, M.B. Green and P. Vanhove, Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus, J. Number Theory 196 (2019) 381 [arXiv:1509.00363] [INSPIRE].CrossRefzbMATHGoogle Scholar
  13. [13]
    A. Basu, Poisson equation for the Mercedes diagram in string theory at genus one, Class. Quant. Grav. 33 (2016) 055005 [arXiv:1511.07455] [INSPIRE].
  14. [14]
    F. Zerbini, Single-valued multiple zeta values in genus 1 superstring amplitudes, Commun. Num. Theor. Phys. 10 (2016) 703 [arXiv:1512.05689] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. D’Hoker and M.B. Green, Identities between Modular Graph Forms, J. Number Theor. 189 (2018) 25 [arXiv:1603.00839] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Basu, Poisson equation for the three loop ladder diagram in string theory at genus one, Int. J. Mod. Phys. A 31 (2016) 1650169 [arXiv:1606.02203] [INSPIRE].
  17. [17]
    A. Basu, Proving relations between modular graph functions, Class. Quant. Grav. 33 (2016) 235011 [arXiv:1606.07084] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Basu, Simplifying the one loop five graviton amplitude in type IIB string theory, Int. J. Mod. Phys. A 32 (2017) 1750074 [arXiv:1608.02056] [INSPIRE].
  19. [19]
    E. D’Hoker and J. Kaidi, Hierarchy of Modular Graph Identities, JHEP 11 (2016) 051 [arXiv:1608.04393] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Kleinschmidt and V. Verschinin, Tetrahedral modular graph functions, JHEP 09 (2017) 155 [arXiv:1706.01889] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E. D’Hoker and W. Duke, Fourier series of modular graph functions, arXiv:1708.07998 [INSPIRE].
  22. [22]
    J. Broedel, O. Schlotterer and F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop, arXiv:1803.00527 [INSPIRE].
  23. [23]
    W. Lerche, B.E.W. Nilsson, A.N. Schellekens and N.P. Warner, Anomaly Cancelling Terms From the Elliptic Genus, Nucl. Phys. B 299 (1988) 91 [INSPIRE].
  24. [24]
    S. Stieberger and T.R. Taylor, NonAbelian Born-Infeld action and type I-heterotic duality (II): Nonrenormalization theorems, Nucl. Phys. B 648 (2003) 3 [hep-th/0209064] [INSPIRE].
  25. [25]
    L. Dolan and P. Goddard, Current Algebra on the Torus, Commun. Math. Phys. 285 (2009) 219 [arXiv:0710.3743] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Basu, Low momentum expansion of one loop amplitudes in heterotic string theory, JHEP 11 (2017) 139 [arXiv:1708.08409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Basu, A simplifying feature of the heterotic one loop four graviton amplitude, Phys. Lett. B 776 (2018) 182 [arXiv:1710.01993] [INSPIRE].
  28. [28]
    S. Stieberger, Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator, J. Phys. A 47 (2014) 155401 [arXiv:1310.3259] [INSPIRE].
  29. [29]
    S. Stieberger and T.R. Taylor, Closed String Amplitudes as Single-Valued Open String Amplitudes, Nucl. Phys. B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE].
  30. [30]
    F. Brown and C. Dupont, Superstring amplitudes in genus 0 and 1, talk given by F. Brown in String Math, Sendai, Japan, June 18, 2018.Google Scholar
  31. [31]
    O. Schlotterer and O. Schnetz, Closed strings as single-valued open strings: A genus-zero derivation, arXiv:1808.00713 [INSPIRE].
  32. [32]
    F. Brown and C. Dupont, Single-valued integration and superstring amplitudes in genus zero, arXiv:1810.07682 [INSPIRE].
  33. [33]
    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    F. Brown, Single-valued Motivic Periods and Multiple Zeta Values, SIGMA 2 (2014) e25 [arXiv:1309.5309] [INSPIRE].
  35. [35]
    F. Brown, Notes on motivic periods, Commun. Num. Theor. Phys. 11 (2015) 557 [arXiv:1512.06410].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Beilinson, A. Varchenko, A. Goncharov and V. Shekhtman, Projective Geometry and K-theory, Leningrad Math. J. 3 (1991) 523.MathSciNetzbMATHGoogle Scholar
  37. [37]
    O. Schnetz, Graphical hyperlogarithms, talk within the trimester Periods in Number Theory, Algebraic Geometry and Physics, HIM, Bonn, Germany, Feb. 27, 2018.Google Scholar
  38. [38]
    F. Brown, A class of non-holomorphic modular forms I, 2017, Res. Math. Sci. 5 (2018) [arXiv:1707.01230] [INSPIRE].
  39. [39]
    F. Brown, A class of non-holomorphic modular forms II: equivariant iterated Eisenstein integrals, arXiv:1708.03354.
  40. [40]
    Y.-t. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155 [arXiv:1602.01674] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlotterer, Heterotic and bosonic string amplitudes via field theory, JHEP 10 (2018) 012 [arXiv:1803.05452] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
  43. [43]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Adams and S. Weinzierl, The ε-form of the differential equations for Feynman integrals in the elliptic case, Phys. Lett. B 781 (2018) 270 [arXiv:1802.05020] [INSPIRE].
  46. [46]
    J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic Feynman integrals and pure functions, arXiv:1809.10698 [INSPIRE].
  47. [47]
    S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, JHEP 08 (2017) 097 [arXiv:1706.08527] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    L. Kronecker, Zur Theorie der elliptischen Funktionen, Mathematische Werke IV (1881) 313.Google Scholar
  49. [49]
    F. Brown and A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917.
  50. [50]
    D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991) 449.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic String Theory. 2. The Interacting Heterotic String, Nucl. Phys. B 267 (1986) 75 [INSPIRE].
  52. [52]
    N. Sakai and Y. Tanii, One Loop Amplitudes and Effective Action in Superstring Theories, Nucl. Phys. B 287 (1987) 457 [INSPIRE].
  53. [53]
    J.R. Ellis, P. Jetzer and L. Mizrachi, One Loop String Corrections to the Effective Field Theory, Nucl. Phys. B 303 (1988) 1 [INSPIRE].
  54. [54]
    M. Abe, H. Kubota and N. Sakai, Loop Corrections to the E 8 × E 8 Heterotic String Effective Lagrangian, Nucl. Phys. B 306 (1988) 405 [INSPIRE].
  55. [55]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].
  56. [56]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys. 60 (1988) 917 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    A.G. Tsuchiya, On new theta identities of fermion correlation functions on genus g Riemann surfaces, arXiv:1710.00206 [INSPIRE].
  59. [59]
    A.G. Tsuchiya, On the pole structures of the disconnected part of hyper elliptic g loop M point super string amplitudes, arXiv:1209.6117 [INSPIRE].
  60. [60]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].
  61. [61]
    M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [INSPIRE].
  62. [62]
    M.B. Green, H.-h. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D 61 (2000) 104010 [hep-th/9910055] [INSPIRE].
  63. [63]
    M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP 01 (2006) 093 [hep-th/0510027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    M.B. Green, S.D. Miller and P. Vanhove, SL(2, ℤ)-invariance and D-instanton contributions to the D 6 R 4 interaction, Commun. Num. Theor. Phys. 09 (2015) 307 [arXiv:1404.2192] [INSPIRE].
  65. [65]
    B. Schoeneberg, Elliptic modular functions, Springer-Verlag, (1974).Google Scholar
  66. [66]
    J.E. Gerken and J. Kaidi, Holomorphic subgraph reduction of higher-valence modular graph forms, arXiv:1809.05122 [INSPIRE].
  67. [67]
    J. Broedel, N. Matthes and O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra, J. Phys. A 49 (2016) 155203 [arXiv:1507.02254] [INSPIRE].
  68. [68]
    D. Zagier and H. Gangl, Classical and elliptic polylogarithms and special values of L-series, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), vol. 548 of NATO Sci. Ser. C Math. Phys. Sci., pp. 561-615, Kluwer Acad. Publ., Dordrecht, (2000).Google Scholar
  69. [69]
    F. Brown, Multiple modular values and the relative completion of the fundamental group of m 1,1, arXiv:1407.5167.
  70. [70]
    F. Zerbini, Elliptic multiple zeta values, modular graph functions and genus 1 superstring scattering amplitudes, Ph.D. thesis, Bonn U., 2017. arXiv:1804.07989 [INSPIRE].
  71. [71]
    D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [INSPIRE].
  72. [72]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  73. [73]
    O. Schlotterer, Amplitude relations in heterotic string theory and Einstein-Yang-Mills, JHEP 11 (2016) 074 [arXiv:1608.00130] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  75. [75]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, Multiple Zeta Values and Superstring Amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981) 415 (1982).Google Scholar
  77. [77]
    C. Angelantonj, I. Florakis and B. Pioline, A new look at one-loop integrals in string theory, Commun. Num. Theor. Phys. 6 (2012) 159 [arXiv:1110.5318] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    W. Lerche, B.E.W. Nilsson and A.N. Schellekens, Heterotic String Loop Calculation of the Anomaly Cancelling Term, Nucl. Phys. B 289 (1987) 609 [INSPIRE].
  79. [79]
    W. Lerche, Elliptic Index and Superstring Effective Actions, Nucl. Phys. B 308 (1988) 102 [INSPIRE].
  80. [80]
    J.M. Drummond, P.J. Heslop, P.S. Howe and S.F. Kerstan, Integral invariants in N = 4 SYM and the effective action for coincident D-branes, JHEP 08 (2003) 016 [hep-th/0305202] [INSPIRE].
  81. [81]
    P.S. Howe, U. Lindström and L. Wulff, D = 10 supersymmetric Yang-Mills theory at α 4, JHEP 07 (2010) 028 [arXiv:1004.3466] [INSPIRE].
  82. [82]
    G. Bossard, P.S. Howe, U. Lindström, K.S. Stelle and L. Wulff, Integral invariants in maximally supersymmetric Yang-Mills theories, JHEP 05 (2011) 021 [arXiv:1012.3142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    D.J. Gross and J.H. Sloan, The Quartic Effective Action for the Heterotic String, Nucl. Phys. B 291 (1987) 41 [INSPIRE].
  84. [84]
    Y. Kikuchi and C. Marzban, Low-energy Effective Lagrangian of Heterotic String Theory, Phys. Rev. D 35 (1987) 1400 [INSPIRE].
  85. [85]
    E.A. Bergshoeff and M. de Roo, The Quartic Effective Action of the Heterotic String and Supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].
  86. [86]
    A.A. Tseytlin, Heterotic type-I superstring duality and low-energy effective actions, Nucl. Phys. B 467 (1996) 383 [hep-th/9512081] [INSPIRE].
  87. [87]
    S. Stieberger and T.R. Taylor, NonAbelian Born-Infeld action and type-I. Heterotic duality (1): Heterotic F**6 terms at two loops, Nucl. Phys. B 647 (2002) 49 [hep-th/0207026] [INSPIRE].
  88. [88]
    G. Bossard, C. Cosnier-Horeau and B. Pioline, Protected couplings and BPS dyons in half-maximal supersymmetric string vacua, Phys. Lett. B 765 (2017) 377 [arXiv:1608.01660] [INSPIRE].
  89. [89]
    G. Bossard, C. Cosnier-Horeau and B. Pioline, Four-derivative couplings and BPS dyons in heterotic CHL orbifolds, SciPost Phys. 3 (2017) 008 [arXiv:1702.01926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    J. Polchinski and E. Witten, Evidence for heterotic - type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].
  91. [91]
    C.R. Mafra and O. Schlotterer, One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, JHEP 04 (2016) 148 [arXiv:1603.04790] [INSPIRE].ADSzbMATHGoogle Scholar
  92. [92]
    C.R. Mafra and O. Schlotterer, Double-Copy Structure of One-Loop Open-String Amplitudes, Phys. Rev. Lett. 121 (2018) 011601 [arXiv:1711.09104] [INSPIRE].
  93. [93]
    S. Lee and O. Schlotterer, Fermionic one-loop amplitudes of the RNS superstring, JHEP 03 (2018) 190 [arXiv:1710.07353] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    A. Tsuchiya, More on One Loop Massless Amplitudes of Superstring Theories, Phys. Rev. D 39 (1989) 1626 [INSPIRE].
  95. [95]
    A. Gregori, E. Kiritsis, C. Kounnas, N.A. Obers, P.M. Petropoulos and B. Pioline, R 2 corrections and nonperturbative dualities of N = 4 string ground states, Nucl. Phys. B 510 (1998) 423 [hep-th/9708062] [INSPIRE].
  96. [96]
    N.E.J. Bjerrum-Bohr and P. Vanhove, Explicit Cancellation of Triangles in One-loop Gravity Amplitudes, JHEP 04 (2008) 065 [arXiv:0802.0868] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    D.M. Richards, The One-Loop Five-Graviton Amplitude and the Effective Action, JHEP 10 (2008) 042 [arXiv:0807.2421] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  98. [98]
    M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP 10 (2013) 188 [arXiv:1307.3534] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  99. [99]
    J.E. Gerken, A. Kleinschmidt, C. Mafra and O. Schlotterer, to appear.Google Scholar
  100. [100]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics. Cambridge University Press, (2007).Google Scholar
  101. [101]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Theoretical and Mathematical Physics, Springer, Heidelberg, Germany, (2013).Google Scholar
  102. [102]
    C.R. Mafra and O. Schlotterer, Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals, JHEP 01 (2017) 031 [arXiv:1609.07078] [INSPIRE].
  103. [103]
    S. Stieberger, Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory, Phys. Rev. Lett. 106 (2011) 111601 [arXiv:0910.0180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  104. [104]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].
  105. [105]
    N. Matthes, Elliptic multiple zeta values. Ph.D. Thesis, Universität Hamburg, Germany, (2016).Google Scholar
  106. [106]
    S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions, Compos. Math. 151 (2015) 2329 [arXiv:1406.2664] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  107. [107]
    L. Adams and S. Weinzierl, Feynman integrals and iterated integrals of modular forms, Commun. Num. Theor. Phys. 12 (2018) 193 [arXiv:1704.08895] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  108. [108]
    E. Remiddi and L. Tancredi, An Elliptic Generalization of Multiple Polylogarithms, Nucl. Phys. B 925 (2017) 212 [arXiv:1709.03622] [INSPIRE].
  109. [109]
    J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev. Lett. 120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP 05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
  111. [111]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev. D 97 (2018) 116009 [arXiv:1712.07095] [INSPIRE].
  112. [112]
    J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, JHEP 08 (2018) 014 [arXiv:1803.10256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  113. [113]
    L. Adams, E. Chaubey and S. Weinzierl, Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter, Phys. Rev. Lett. 121 (2018) 142001 [arXiv:1804.11144] [INSPIRE].
  114. [114]
    L. Adams, E. Chaubey and S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop, JHEP 10 (2018) 206 [arXiv:1806.04981] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, From modular forms to differential equations for Feynman integrals, in KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Zeuthen, Germany, October 23-26, 2017, arXiv:1807.00842 [INSPIRE].
  116. [116]
    J. Blümlein, A. De Freitas, M. Van Hoeij, E. Imamoglu, P. Marquard and C. Schneider, The ρ parameter at three loops and elliptic integrals, PoS(LL2018)017 (2018) [arXiv:1807.05287] [INSPIRE].
  117. [117]
    J. Blümlein, Iterative Non-iterative Integrals in Quantum Field Theory, in KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Zeuthen, Germany, October 23-26, 2017, arXiv:1808.08128 [INSPIRE].
  118. [118]
    J. Broedel and O. Schlotterer, One-loop string scattering amplitudes as iterated Eisenstein integrals, in KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Zeuthen, Germany, October 23-26, 2017, 2018.Google Scholar
  119. [119]
    F. Zerbini, Modular and holomorphic graph function from superstring amplitudes, in KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Zeuthen, Germany, October 23-26, 2017, arXiv:1807.04506 [INSPIRE].
  120. [120]
    J. Broedel, E. Panzer, O. Schlotterer and F. Zerbini, to appear.Google Scholar
  121. [121]
    E. D’Hoker and M.B. Green, Zhang-Kawazumi Invariants and Superstring Amplitudes, J. Number Theory 144 (2014) 111 [arXiv:1308.4597] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  122. [122]
    E. D’Hoker, M.B. Green, B. Pioline and R. Russo, Matching the D 6 R 4 interaction at two-loops, JHEP 01 (2015) 031 [arXiv:1405.6226] [INSPIRE].
  123. [123]
    E. D’Hoker, M.B. Green and B. Pioline, Higher genus modular graph functions, string invariants and their exact asymptotics, Commun. Math. Phys. (2018) [arXiv:1712.06135] [INSPIRE].
  124. [124]
    E. D’Hoker, M.B. Green and B. Pioline, Asymptotics of the D 84 genus-two string invariant, arXiv:1806.02691 [INSPIRE].
  125. [125]
    A. Weil, Elliptic functions according to Eisenstein and Kronecker, Classics in Mathematics, Springer-Verlag, Berlin, Germany, (1999).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany
  2. 2.International Solvay InstitutesBrusselsBelgium
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations