Advertisement

Non-equilibrium critical phenomena from probe brane holography in Schrödinger spacetime

  • Ali VahediEmail author
  • Mobin Shakeri
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

We study the non-equilibrium steady-state phase transition from probe brane holography in z = 2 Schrödinger spacetime. Concerning differential conductivity, a phase transition could occur in the conductor state. Considering constant current operator as the external field and the conductivity as an order parameter, we derive scaling behavior of order parameter near the critical point. We explore the critical exponents of the nonequilibrium phase transition in two different Schrödinger spacetimes, which originated 1) from supergravity, and 2) from AdS blackhole in the light-cone coordinates. Interestingly, we will see that even at the zero charge density, in our first geometry, the dynamical critical exponent of z = 2 has a major effect on the critical exponents.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Kobayashi et al., Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].
  2. [2]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Ammon, C. Hoyos, A. O’Bannon and J.M.S. Wu, Holographic flavor transport in Schrödinger spacetime, JHEP 06 (2010) 012 [arXiv:1003.5913] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].
  6. [6]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].
  7. [7]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B.S. Kim and D. Yamada, Properties of Schroedinger black holes from AdS space, JHEP 07 (2011) 120 [arXiv:1008.3286] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    B.S. Kim, E. Kiritsis and C. Panagopoulos, Holographic quantum criticality and strange metal transport, New J. Phys. 14 (2012) 043045 [arXiv:1012.3464] [INSPIRE].
  10. [10]
    K.B. Fadafan, Strange metals at finite ’t Hooft coupling, Eur. Phys. J. C 73 (2013) 2281 [arXiv:1208.1855] [INSPIRE].
  11. [11]
    K.-Y. Kim and D.-W. Pang, Holographic DC conductivities from the open string metric, JHEP 09 (2011) 051 [arXiv:1108.3791] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Hashimoto and T. Oka, Vacuum instability in electric fields via AdS/CFT: Euler-Heisenberg lagrangian and planckian thermalization, JHEP 10 (2013) 116 [arXiv:1307.7423] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Vahedi, Ground State Instability in Non-relativistic QFT and Euler-Heisenberg Lagrangian via Holography, arXiv:1710.05309 [INSPIRE].
  14. [14]
    S. Nakamura, Negative differential resistivity from holography, Prog. Theor. Phys. 124 (2010) 1105 [arXiv:1006.4105] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Nakamura, Nonequilibrium phase transitions and nonequilibrium critical point from AdS/CFT, Phys. Rev. Lett. 109 (2012) 120602 [arXiv:1204.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Ali-Akbari and A. Vahedi, Non-equilibrium phase transition from AdS/CFT, Nucl. Phys. B 877 (2013) 95 [arXiv:1305.3713] [INSPIRE].
  17. [17]
    M. Matsumoto and S. Nakamura, Critical exponents of nonequilibrium phase transitions in AdS/CFT correspondence, Phys. Rev. D 98 (2018) 106027 [arXiv:1804.10124] [INSPIRE].
  18. [18]
    H.-B. Zeng and H.-Q. Zhang, Universal critical exponents of nonequilibrium phase transitions from holography, Phys. Rev. D 98 (2018) 106024 [arXiv:1807.11881] [INSPIRE].
  19. [19]
    J. Casalderrey-Solana et al., Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  20. [20]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Kundu and S. Kundu, Steady-state physics, effective temperature dynamics in holography, Phys. Rev. D 91 (2015) 046004 [arXiv:1307.6607] [INSPIRE].
  22. [22]
    A. Kundu, Effective temperature in steady-state dynamics from holography, JHEP 09 (2015) 042 [arXiv:1507.00818] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Banerjee, A. Kundu and S. Kundu, Flavour fields in steady state: stress tensor and free energy, JHEP 02 (2016) 102 [arXiv:1512.05472] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    K. Hashimoto, N. Iizuka and T. Oka, Rapid thermalization by baryon injection in gauge/gravity duality, Phys. Rev. D 84 (2011) 066005 [arXiv:1012.4463] [INSPIRE].
  25. [25]
    C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [INSPIRE].
  26. [26]
    A. Volovich and C. Wen, Correlation functions in non-relativistic holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  28. [28]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Vahedi , M. Shakeri and D. Zolfaghari, Effect of dynamical critical exponents on non-equilibrium critical exponent, work in progress.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departemet of PhysicsKharazmi UniversityTehranIran
  2. 2.Applied Science Research Center (ASRC)Kharazmi UniversityKarajIran

Personalised recommendations