Advertisement

The moduli spaces of S-fold CFTs

  • Ivan Garozzo
  • Gabriele Lo Monaco
  • Noppadol MekareeyaEmail author
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

An S-fold has played an important role in constructing supersymmetric field theories with interesting features. It can be viewed as a type of AdS4 solutions of Type IIB string theory where the fields in overlapping patches are glued by elements of SL(2, ℤ). This paper examines three dimensional quiver theories that arise from brane configurations with an inclusion of the S-fold. An important feature of such a quiver is that it contains a link, which is the T (U(N)) theory, between two U(N) groups, along with bifundamental and fundamental hypermultiplets. We systematically study the moduli spaces of those quiver theories, including the cases in which the non-zero Chern-Simons levels are turned on. A number of such moduli spaces turns out to have a very rich structure and tells us about the brane dynamics in the presence of an S-fold.

Keywords

Brane Dynamics in Gauge Theories Duality in Gauge Field Theories Supersymmetric Gauge Theory Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].
  3. [3]
    M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201] [INSPIRE].
  4. [4]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  5. [5]
    E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].
  6. [6]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
  7. [7]
    D.L. Jafferis and X. Yin, Chern-Simons-Matter theory and mirror symmetry, arXiv:0810.1243 [INSPIRE].
  8. [8]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].
  9. [9]
    K. Hosomichi et al., N = 4 superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].
  10. [10]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    B. Assel, Hanany-Witten effect and SL(2, ℤ) dualities in matrix models, JHEP 10 (2014) 117 [arXiv:1406.5194] [INSPIRE].
  12. [12]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  13. [13]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M 2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].
  14. [14]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M 2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].
  15. [15]
    E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].
  16. [16]
    O.J. Ganor, N.P. Moore, H.-Y. Sun and N.R. Torres-Chicon, Janus configurations with SL(2, ℤ)-duality twists, strings on mapping tori and a tridiagonal determinant formula, JHEP 07 (2014) 010 [arXiv:1403.2365] [INSPIRE].
  17. [17]
    B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019 [arXiv:1804.06419] [INSPIRE].
  18. [18]
    I. García-Etxebarria and D. Regalado, \( \mathcal{N}=3 \) four dimensional field theories, JHEP 03 (2016) 083 [arXiv:1512.06434] [INSPIRE].
  19. [19]
    O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP 06 (2016) 044 [arXiv:1602.08638] [INSPIRE].
  20. [20]
    C. Couzens et al., F-theory and AdS 3 /CFT 2, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
  21. [21]
    C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS 3 /CFT 2 (2, 0), JHEP 06 (2018) 008 [arXiv:1712.07631] [INSPIRE].
  22. [22]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
  23. [23]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
  24. [24]
    G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
  25. [25]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].
  26. [26]
    B. Assel, The space of vacua of 3d \( \mathcal{N}=3 \) abelian theories, JHEP 08 (2017) 011 [arXiv:1706.00793] [INSPIRE].
  27. [27]
    K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-Matter theories, JHEP 07 (2013) 079 [arXiv:1305.1633] [INSPIRE].
  28. [28]
    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic duals of D = 3 N = 4 superconformal field theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].
  29. [29]
    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, T ρσ(G) theories and their Hilbert series, JHEP 01 (2015) 150 [arXiv:1410.1548] [INSPIRE].
  30. [30]
    A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B. Assel, C. Bachas, J. Estes and J. Gomis, IIB duals of D = 3 N = 4 circular quivers, JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].
  32. [32]
    Y. Terashima and M. Yamazaki, SL(2, ℝ) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].
  33. [33]
    D. Gang, N. Kim, M. Romo and M. Yamazaki, Aspects of defects in 3d-3d correspondence, JHEP 10 (2016) 062 [arXiv:1510.05011] [INSPIRE].
  34. [34]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].
  35. [35]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].
  36. [36]
    A. Hanany and N. Mekareeya, Complete intersection moduli spaces in N = 4 gauge theories in three dimensions, JHEP 01 (2012) 079 [arXiv:1110.6203] [INSPIRE].
  37. [37]
    A. Hanany and R. Kalveks, Quiver theories for moduli spaces of classical group nilpotent orbits, JHEP 06 (2016) 130 [arXiv:1601.04020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Hanany and N. Mekareeya, Tri-vertices and SU(2)’s, JHEP 02 (2011) 069 [arXiv:1012.2119] [INSPIRE].
  39. [39]
    A. Hanany and G. Zafrir, Discrete gauging in six dimensions, JHEP 07 (2018) 168 [arXiv:1804.08857] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063 [arXiv:1007.0992] [INSPIRE].
  41. [41]
    S. Cremonesi, N. Mekareeya and A. Zaffaroni, The moduli spaces of 3d \( \mathcal{N}\ge 2 \) Chern-Simons gauge theories and their Hilbert series, JHEP 10 (2016) 046 [arXiv:1607.05728] [INSPIRE].
  42. [42]
    D. Forcella, A. Hanany and A. Zaffaroni, Baryonic generating functions, JHEP 12 (2007) 022 [hep-th/0701236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert series of the one instanton moduli space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    D.L. Jafferis, Quantum corrections to \( \mathcal{N}=2 \) Chern-Simons theories with flavor and their AdS 4 duals, JHEP 08 (2013) 046 [arXiv:0911.4324] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Ivan Garozzo
    • 1
    • 2
  • Gabriele Lo Monaco
    • 1
    • 2
  • Noppadol Mekareeya
    • 2
    • 3
    Email author
  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly
  3. 3.Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations