Advertisement

Effective hopping in holographic Bose and Fermi-Hubbard models

  • Mitsutoshi Fujita
  • René Meyer
  • Sumiran Pujari
  • Masaki Tezuka
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

In this paper, we analyze a proposed gravity dual to a SU(N) Bose-Hubbard model, as well as construct a holographic dual of a SU(N) Fermi-Hubbard model from D-branes in string theory. In both cases, the SU(N) is dynamical, i.e. the hopping degrees of freedom are strongly coupled to SU(N) gauge bosons which themselves are strongly interacting. The vacuum expectation value (VEV) of the hopping term (i.e. the hopping energy) is analyzed in the gravity dual as a function of the bulk mass of the field dual to the hopping term, as well as of the coupling constants of the model. The bulk mass controls the anomalous dimension (i.e. the critical exponent) of the hopping term in the SU(N) Bose-Hubbard model. We compare the hopping energy to the corresponding result in a numerical simulation of the ungauged SU(N ) Bose-Hubbard model. We find agreement when the hopping parameter is smaller than the other couplings. Our analysis shows that the kinetic energy increases as the bulk mass increases, due to increased contributions from the IR. The holographic Bose-Hubbard model is then compared with the string theory construction of a SU(N) Fermi-Hubbard model. The string theory construction makes it possible to describe fluctuations around a half-filled state in the supergravity limit, which map to \( \mathcal{O}(1) \) occupation number fluctuations in the Fermi-Hubbard model at half filling. Finally, the VEV of the Bose-Hubbard model is shown to agree with the one of the fermionic Hubbard model with the help of a two-site version of the Jordan-Wigner transformation.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner and P. Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev. Lett. 81 (1998) 3108 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.P.A. Fisher, P.B. Weichman, G. Grinstein and D.S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40 (1989) 546 [INSPIRE].
  3. [3]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Fujita, S. Harrison, A. Karch, R. Meyer and N.M. Paquette, Towards a Holographic Bose-Hubbard Model, JHEP 04 (2015) 068 [arXiv:1411.7899] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Karch and A. Katz, Adding flavor to AdS/CFT, Fortsch. Phys. 51 (2003) 759 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Kachru, A. Karch and S. Yaida, Holographic Lattices, Dimers and Glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].
  7. [7]
    S. Kachru, A. Karch and S. Yaida, Adventures in Holographic Dimer Models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [INSPIRE].
  8. [8]
    J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A Holographic Model of the Kondo Effect, JHEP 12 (2013) 086 [arXiv:1310.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. O’Bannon, I. Papadimitriou and J. Probst, A Holographic Two-Impurity Kondo Model, JHEP 01 (2016) 103 [arXiv:1510.08123] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    C.J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, Cambridge University Press (2002).Google Scholar
  11. [11]
    A. Griffin, T. Nikuni and E. Zaremba, Bose-condensed gases at finite temperatures, Cambridge University Press (2009).Google Scholar
  12. [12]
    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  14. [14]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
  15. [15]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Sen, State Operator Correspondence and Entanglement in AdS 2 /CF T 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].
  17. [17]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].
  18. [18]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].
  19. [19]
    P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum Quench Across a Zero Temperature Holographic Superfluid Transition, JHEP 03 (2013) 146 [arXiv:1211.7076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic Description of AdS 2 Black Holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].
  25. [25]
    J.M. Camino, A. Paredes and A.V. Ramallo, Stable wrapped branes, JHEP 05 (2001) 011 [hep-th/0104082] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].
  27. [27]
    A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108 [arXiv:1212.0871] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
  30. [30]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    J. Sonnenschein, Holography Inspired Stringy Hadrons, Prog. Part. Nucl. Phys. 92 (2017) 1 [arXiv:1602.00704] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].
  34. [34]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].
  36. [36]
    M. Fujita, C.M. Melby-Thompson, R. Meyer and S. Sugimoto, Holographic Chern-Simons Defects, JHEP 06 (2016) 163 [arXiv:1601.00525] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].
  39. [39]
    M.R. Garousi and R.C. Myers, World volume interactions on D-branes, Nucl. Phys. B 542 (1999) 73 [hep-th/9809100] [INSPIRE].
  40. [40]
    D.N. Kabat and W. Taylor, Spherical membranes in matrix theory, Adv. Theor. Math. Phys. 2 (1998) 181 [hep-th/9711078] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    Z. Abidin and C.E. Carlson, Strange hadrons and kaon-to-pion transition form factors from holography, Phys. Rev. D 80 (2009) 115010 [arXiv:0908.2452] [INSPIRE].
  42. [42]
    F. Zuo, Y. Jia and T. Huang, γ ρ 0π 0 Transition Form Factor in Extended AdS/QCD Models, Eur. Phys. J. C 67 (2010) 253 [arXiv:0910.3990] [INSPIRE].
  43. [43]
    A. Ballon-Bayona, G. Krein and C. Miller, Decay constants of the pion and its excitations in holographic QCD, Phys. Rev. D 91 (2015) 065024 [arXiv:1412.7505] [INSPIRE].
  44. [44]
    Y. Araki and T. Hatsuda, Chiral Gap and Collective Excitations in Monolayer Graphene from Strong Coupling Expansion of Lattice Gauge Theory, Phys. Rev. B 82 (2010) 121403 [arXiv:1003.1769] [INSPIRE].
  45. [45]
    G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].
  46. [46]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].
  48. [48]
    S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91 (2015) 155126 [arXiv:1501.03165] [INSPIRE].
  49. [49]
    O. Aharony, J. Sonnenschein and S. Yankielowicz, A Holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (1998) [INSPIRE].
  51. [51]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (1998) [INSPIRE].
  52. [52]
    A.A. Tseytlin, On nonAbelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].
  53. [53]
    A. Hashimoto and W. Taylor, Fluctuation spectra of tilted and intersecting D-branes from the Born-Infeld action, Nucl. Phys. B 503 (1997) 193 [hep-th/9703217] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and AstronomySun Yat-Sen UniversityGuangzhouChina
  2. 2.Institute for Theoretical Physics and AstrophysicsUniversity of WürzburgWürzburgGermany
  3. 3.Department of Physics and AstronomyUniversity of KentuckyLexingtonU.S.A.
  4. 4.Department of PhysicsIIT BombayMumbaiIndia
  5. 5.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations