Advertisement

Global anomalies, discrete symmetries and hydrodynamic effective actions

  • Paolo Glorioso
  • Hong Liu
  • Srivatsan RajagopalEmail author
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

We derive effective actions for parity-violating fluids in both (3 + 1) and (2 + 1) dimensions, including those with anomalies. As a corollary we confirm the most general constitutive relations for such systems derived previously using other methods. We discuss in detail connections between parity-odd transport and underlying discrete symmetries. In (3+1) dimensions we elucidate connections between anomalous transport coefficients and global anomalies, and clarify a previous puzzle concerning transports and local gravitational anomalies.

Keywords

Anomalies in Field and String Theories Discrete Symmetries Effective Field Theories Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Vilenkin, Macroscopic parity violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation, Phys. Rev. D 20 (1979) 1807 [INSPIRE].
  2. [2]
    A. Vilenkin, Quantum field theory at finite temperature in a rotating system, Phys. Rev. D 21 (1980) 2260 [INSPIRE].
  3. [3]
    A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].
  4. [4]
    G.E. Volovik and A. Vilenkin, Macroscopic parity violating effects and 3 He-A, Phys. Rev. D 62 (2000) 025014 [hep-ph/9905460] [INSPIRE].
  5. [5]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Azeyanagi, R. Loganayagam, G.S. Ng and M.J. Rodriguez, Holographic thermal helicity, JHEP 08 (2014) 040 [arXiv:1311.2940] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE].
  11. [11]
    A.V. Sadofyev and M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach, Phys. Lett. B 697 (2011) 404 [arXiv:1010.1550] [INSPIRE].
  12. [12]
    A.V. Sadofyev, V.I. Shevchenko and V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach, Phys. Rev. D 83 (2011) 105025 [arXiv:1012.1958] [INSPIRE].
  13. [13]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Banerjee, S. Dutta, S. Jain, R. Loganayagam and T. Sharma, Constraints on anomalous fluid in arbitrary dimensions, JHEP 03 (2013) 048 [arXiv:1206.6499] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Landsteiner, Notes on anomaly induced transport, Acta Phys. Polon. B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].
  17. [17]
    Y. Neiman and Y. Oz, Anomalies in superfluids and a chiral electric effect, JHEP 09 (2011) 011 [arXiv:1106.3576] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Ryu, J.E. Moore and A.W.W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85 (2012) 045104 [arXiv:1010.0936] [INSPIRE].
  20. [20]
    M. Stone, Gravitational anomalies and thermal Hall effect in topological insulators, Phys. Rev. B 85 (2012) 184503 [arXiv:1201.4095] [INSPIRE].
  21. [21]
    D. Kharzeev, Parity violation in hot QCD: why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].
  22. [22]
    D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [INSPIRE].
  23. [23]
    M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev. D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].
  24. [24]
    D.T. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [INSPIRE].
  25. [25]
    M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].
  27. [27]
    D.E. Kharzeev, The chiral magnetic effect and anomaly-induced transport, Prog. Part. Nucl. Phys. 75 (2014) 133 [arXiv:1312.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Valle, Hydrodynamics in 1 + 1 dimensions with gravitational anomalies, JHEP 08 (2012) 113 [arXiv:1206.1538] [INSPIRE].
  29. [29]
    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].
  30. [30]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
  31. [31]
    X. Guo, D.E. Kharzeev, X.-G. Huang, W.-T. Deng and Y. Hirono, Chiral vortical and magnetic effects in anomalous hydrodynamics, Nucl. Phys. A 967 (2017) 776 [arXiv:1704.05375] [INSPIRE].
  32. [32]
    G. Wang, Experimental overview of the search for chiral effects at RHIC, J. Phys. Conf. Ser. 779 (2017) 012013 [INSPIRE].
  33. [33]
    D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [INSPIRE].
  34. [34]
    M. Joyce and M.E. Shaposhnikov, Primordial magnetic fields, right-handed electrons and the Abelian anomaly, Phys. Rev. Lett. 79 (1997) 1193 [astro-ph/9703005] [INSPIRE].
  35. [35]
    M. Giovannini and M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly, Phys. Rev. D 57 (1998) 2186 [hep-ph/9710234] [INSPIRE].
  36. [36]
    M. Kaminski, C.F. Uhlemann, M. Bleicher and J. Schaffner-Bielich, Anomalous hydrodynamics kicks neutron stars, Phys. Lett. B 760 (2016) 170 [arXiv:1410.3833] [INSPIRE].
  37. [37]
    E. Shaverin and A. Yarom, An anomalous propulsion mechanism, Nucl. Phys. B 928 (2018) 268 [arXiv:1411.5581] [INSPIRE].
  38. [38]
    Q. Li et al., Observation of the chiral magnetic effect in ZrTe 5, Nature Phys. 12 (2016) 550 [arXiv:1412.6543] [INSPIRE].
  39. [39]
    J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Arnold et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nature Commun. 7 (2016) 1615 [arXiv:1506.06577] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].
  43. [43]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Anomalous transport from Kubo formulae, Lect. Notes Phys. 871 (2013) 433 [arXiv:1207.5808] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Loganayagam and P. Surowka, Anomaly/transport in an ideal Weyl gas, JHEP 04 (2012) 097 [arXiv:1201.2812] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    S.D. Chowdhury and J.R. David, Anomalous transport at weak coupling, JHEP 11 (2015) 048 [arXiv:1508.01608] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Avkhadiev and A.V. Sadofyev, Chiral vortical effect for bosons, Phys. Rev. D 96 (2017) 045015 [arXiv:1702.07340] [INSPIRE].
  47. [47]
    S. Chapman, Y. Neiman and Y. Oz, Fluid/gravity correspondence, local Wald entropy current and gravitational anomaly, JHEP 07 (2012) 128 [arXiv:1202.2469] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles and anomalies, JHEP 05 (2014) 110 [arXiv:1311.2935] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05 (2014) 134 [arXiv:1310.7024] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP 12 (2014) 031 [arXiv:1407.6061] [INSPIRE].
  52. [52]
    B.R. Majhi, Vacuum condition and the relation between response parameter and anomaly coefficient in (1 + 3) dimensions, JHEP 08 (2014) 045 [arXiv:1405.4634] [INSPIRE].
  53. [53]
    S. Golkar and D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient, JHEP 02 (2015) 169 [arXiv:1207.5806] [INSPIRE].
  54. [54]
    S. Golkar and S. Sethi, Global anomalies and effective field theory, JHEP 05 (2016) 105 [arXiv:1512.02607] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    S.D. Chowdhury and J.R. David, Global gravitational anomalies and transport, JHEP 12 (2016) 116 [arXiv:1604.05003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    R. Loganayagam, Anomalies and the helicity of the thermal state, JHEP 11 (2013) 205 [arXiv:1211.3850] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (2017) 095 [arXiv:1511.03646] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    P. Glorioso, M. Crossley and H. Liu, Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP 09 (2017) 096 [arXiv:1701.07817] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
  60. [60]
    S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev. D 89 (2014) 045016 [arXiv:1107.0732] [INSPIRE].
  61. [61]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Effective actions for anomalous hydrodynamics, JHEP 03 (2014) 034 [arXiv:1312.0610] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    G.M. Monteiro, A.G. Abanov and V.P. Nair, Hydrodynamics with gauge anomaly: variational principle and Hamiltonian formulation, Phys. Rev. D 91 (2015) 125033 [arXiv:1410.4833] [INSPIRE].
  63. [63]
    K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].
  64. [64]
    S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].
  66. [66]
    S. Endlich, A. Nicolis, R.A. Porto and J. Wang, Dissipation in the effective field theory for hydrodynamics: first order effects, Phys. Rev. D 88 (2013) 105001 [arXiv:1211.6461] [INSPIRE].
  67. [67]
    S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].
  68. [68]
    M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP 07 (2015) 025 [arXiv:1502.03076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic dissipative hydrodynamics, JHEP 07 (2014) 123 [arXiv:1405.3967] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett. 114 (2015) 201601 [arXiv:1412.1090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP 05 (2015) 060 [arXiv:1502.00636] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Topological σ-models & dissipative hydrodynamics, JHEP 04 (2016) 039 [arXiv:1511.07809] [INSPIRE].
  73. [73]
    N. Andersson and G.L. Comer, A covariant action principle for dissipative fluid dynamics: from formalism to fundamental physics, Class. Quant. Grav. 32 (2015) 075008 [arXiv:1306.3345] [INSPIRE].
  74. [74]
    S. Floerchinger, Variational principle for theories with dissipation from analytic continuation, JHEP 09 (2016) 099 [arXiv:1603.07148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, JHEP 09 (2018) 127 [arXiv:1701.07436] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    P. Gao and H. Liu, Emergent supersymmetry in local equilibrium systems, JHEP 01 (2018) 040 [arXiv:1701.07445] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    A.P. Polychronakos, Topological mass quantization and parity violation in (2 + 1)-dimensional QED, Nucl. Phys. B 281 (1987) 241 [INSPIRE].
  78. [78]
    O. Alvarez, Topological quantization and cohomology, Commun. Math. Phys. 100 (1985) 279 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Kadanoff Centre for Theoretical PhysicsUniversity of ChicagoChicagoU.S.A.
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations