Advertisement

Reweighting a parton shower using a neural network: the final-state case

  • Enrico BothmannEmail author
  • Luigi Del Debbio
Open Access
Regular Article - Theoretical Physics
  • 7 Downloads

Abstract

The use of QCD calculations that include the resummation of soft-collinear logarithms via parton-shower algorithms is currently not possible in PDF fits due to the high computational cost of evaluating observables for each variation of the PDFs. Unfortunately the interpolation methods that are otherwise applied to overcome this issue are not readily generalised to all-order parton-shower contributions. Instead, we propose an approximation based on training a neural network to predict the effect of varying the input parameters of a parton shower on the cross section in a given observable bin, interpolating between the variations of a training data set. This first publication focuses on providing a proof-of-principle for the method, by varying the shower dependence on αS for both a simplified shower model and a complete shower implementation for three different observables, the leading emission scale, the number of emissions and the Thrust event shape. The extension to the PDF dependence of the initial-state shower evolution that is needed for the application to PDF fits is left to a forthcoming publication.

Keywords

Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    NNPDF collaboration, R.D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  2. [2]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  3. [3]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Alekhin, J. Blumlein and S. Moch, The ABM parton distributions tuned to LHC data, Phys. Rev. D 89 (2014) 054028 [arXiv:1310.3059] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J. Gao, L. Harland-Lang and J. Rojo, The Structure of the Proton in the LHC Precision Era, Phys. Rept. 742 (2018) 1 [arXiv:1709.04922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  7. [7]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].
  8. [8]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.M. Campbell, R.K. Ellis and W.T. Giele, A Multi-Threaded Version of MCFM, Eur. Phys. J. C 75 (2015) 246 [arXiv:1503.06182] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  11. [11]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, in proceedings of the 14th International Workshop on Deep Inelastic Scattering (DIS 2006), Tsukuba, Japan, 20–24 April 2006, World Scientific (2007), pp. 483-486 [hep-ph/0609285] [INSPIRE] and online pdf version at http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-06-352.
  13. [13]
    fastNLO collaboration, D. Britzger, K. Rabbertz, F. Stober and M. Wobisch, New features in version 2 of the fastNLO project, in proceedings of the 20th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012), Bonn, Germany, 26–30 March 2012, M. Kuze, K. Nagano and K. Tokushuku, World Scientific, Hackensack U.S.A. (2007) [arXiv:1208.3641] [INSPIRE].
  14. [14]
    L. Del Debbio, N.P. Hartland and S. Schumann, MCgrid: projecting cross section calculations on grids, Comput. Phys. Commun. 185 (2014) 2115 [arXiv:1312.4460] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    E. Bothmann, N. Hartland and S. Schumann, Introducing MCgrid 2.0: Projecting cross section calculations on grids, Comput. Phys. Commun. 196 (2015) 617 [INSPIRE].
  16. [16]
    V. Bertone, R. Frederix, S. Frixione, J. Rojo and M. Sutton, aMCfast: automation of fast NLO computations for PDF fits, JHEP 08 (2014) 166 [arXiv:1406.7693] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-imagesdeep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting \( H\to b\overline{b} \) with Machine Learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Macaluso and D. Shih, Pulling Out All the Tops with Computer Vision and Deep Learning, JHEP 10 (2018) 121 [arXiv:1803.00107] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned Top Tagging with a Lorentz Layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Lüo, M.-x. Luo, K. Wang, T. Xu and G. Zhu, Quark jet versus gluon jet: deep neural networks with high-level features, arXiv:1712.03634 [INSPIRE].
  22. [22]
    T. Cheng, Recursive Neural Networks in Quark/Gluon Tagging, Comput. Softw. Big Sci. 2 (2018) 3 [arXiv:1711.02633] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet Physics, arXiv:1702.00748 [INSPIRE].
  24. [24]
    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    C. Shimmin et al., Decorrelated Jet Substructure Tagging using Adversarial Neural Networks, Phys. Rev. D 96 (2017) 074034 [arXiv:1703.03507] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T.Q. Nguyen et al., Topology classification with deep learning to improve real-time event selection at the LHC, arXiv:1807.00083 [INSPIRE].
  27. [27]
    E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Abdughani, J. Ren, L. Wu and J.M. Yang, Probing stop with graph neural network at the LHC, arXiv:1807.09088 [INSPIRE].
  29. [29]
    J. Bendavid, Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks, arXiv:1707.00028 [INSPIRE].
  30. [30]
    P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D 97 (2018) 014021 [arXiv:1712.10321] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Ren, L. Wu, J.M. Yang and J. Zhao, Machine Learning Scan and Application in SUSY, arXiv:1708.06615 [INSPIRE].
  33. [33]
    J.W. Monk, Deep Learning as a Parton Shower, arXiv:1807.03685 [INSPIRE].
  34. [34]
    J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks, Phys. Rev. D 95 (2017) 014018 [arXiv:1609.00607] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Carrazza, R. Frederix, K. Hamilton and G. Zanderighi, MINLO t-channel single-top plus jet, JHEP 09 (2018) 108 [arXiv:1805.09855] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].
  37. [37]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].
  39. [39]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [Zh. Eksp. Teor. Fiz. 30 (1956) 87] [INSPIRE].
  40. [40]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, A critical appraisal of NLO + PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    L. Lönnblad, Fooling Around with the Sudakov Veto Algorithm, Eur. Phys. J. C 73 (2013) 2350 [arXiv:1211.7204] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comput. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [INSPIRE].
  43. [43]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  44. [44]
    S. Plätzer and M. Sjodahl, The Sudakov Veto Algorithm Reloaded, Eur. Phys. J. Plus 127 (2012) 26 [arXiv:1108.6180] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Mrenna and P. Skands, Automated Parton-Shower Variations in PYTHIA 8, Phys. Rev. D 94 (2016) 074005 [arXiv:1605.08352] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J. Bellm, S. Plätzer, P. Richardson, A. Siódmok and S. Webster, Reweighting Parton Showers, Phys. Rev. D 94 (2016) 034028 [arXiv:1605.08256] [INSPIRE].ADSGoogle Scholar
  48. [48]
    E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Z. Bern et al., Ntuples for NLO Events at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 1443 [arXiv:1310.7439] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Maître, G. Heinrich and M. Johnson, N(N)LO event files: applications and prospects, PoS(LL2016)016 (2016) [arXiv:1607.06259] [INSPIRE].
  52. [52]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Paszke et al., Automatic differentiation in PyTorch, in proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, U.S.A., 4–9 December 2017.Google Scholar
  55. [55]
    D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].
  56. [56]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91 and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Higgs Centre for Theoretical PhysicsUniversity of EdinburghEdinburghU.K.

Personalised recommendations