Advertisement

On lepton flavor universality in top quark decays

  • Jernej F. KamenikEmail author
  • Andrey Katz
  • Daniel Stolarski
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

We propose a novel strategy to test lepton flavor universality (LFU) in top decays, applicable to top pair production at colliders. Our proposal exploits information in kinematic distributions and mostly hinges on data-driven techniques, thus having very little dependence on our theoretical understanding of top pair production. Based on simplified models accommodating recent hints of LFU violation in charged current B meson decays, we show that existing LHC measurements already provide non-trivial information on the flavor structure and the mass scale of such new physics (NP). We also project that the measurements of LFU in top decays at the high-luminosity LHC could reach a precision at the percent level or below, improving the sensitivity to LFU violating NP in the top sector by more than an order of magnitude compared to existing approaches.

Keywords

Beyond Standard Model Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  2. [2]
    DELPHI, ALEPH, SLD, OPAL, L3 collaborations, SLD Electroweak Group, SLD Heavy Flavour Group and LEP Electroweak Working Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  3. [3]
    HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  4. [4]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  5. [5]
    LHCb collaboration, Angular analysis of the B 0K *0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  6. [6]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  7. [7]
    S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of Lepton Flavor Universality Violations in B Decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Bardhan, P. Byakti and D. Ghosh, A closer look at the R D and \( {R}_{D^{*}} \) anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Scalar contributions to bc(u)τν transitions, Phys. Lett. B 771 (2017) 168 [arXiv:1612.07757] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic B decays to D and D * : R(D (*)), |V cb| and new physics, Phys. Rev. D 95 (2017) 115008 [Erratum ibid. D 97 (2018) 059902] [arXiv:1703.05330] [INSPIRE].
  12. [12]
    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W. Altmannshofer and D.M. Straub, Implications of bs measurements, in proceedings of the 50th Rencontres de Moriond Electroweak Interactions and Unified Theories, La Thuile, Italy, 14–21 March 2015, pp. 333–338 [arXiv:1503.06199] [INSPIRE].
  15. [15]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    ATLAS collaboration, Measurements of the top quark branching ratios into channels with leptons and quarks with the ATLAS detector, Phys. Rev. D 92 (2015) 072005 [arXiv:1506.05074] [INSPIRE].
  18. [18]
    CMS collaboration, Updated search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-HIG-12-052 (2012) [INSPIRE].
  19. [19]
    D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Alpigiani et al., Unitarity Triangle Analysis in the Standard Model and Beyond, in proceedings of the 5th Large Hadron Collider Physics Conference (LHCP 2017), Shanghai, China, 15–20 May 2017, arXiv:1710.09644 [INSPIRE].
  21. [21]
    ALEPH collaboration, A. Heister et al., Search for charged Higgs bosons in e + e collisions at energies up to \( \sqrt{s} \) = 209 GeV, Phys. Lett. B 543 (2002) 1 [hep-ex/0207054] [INSPIRE].
  22. [22]
    L3 collaboration, P. Achard et al., Search for charged Higgs bosons at LEP, Phys. Lett. B 575 (2003) 208 [hep-ex/0309056] [INSPIRE].
  23. [23]
    OPAL collaboration, G. Abbiendi et al., Search for Charged Higgs Bosons in e + e Collisions at \( \sqrt{s} \) = 189209 GeV, Eur. Phys. J. C 72 (2012) 2076 [arXiv:0812.0267] [INSPIRE].
  24. [24]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of Lepton Flavor Universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (*) τν τ and Bτν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].ADSGoogle Scholar
  29. [29]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R}_{D^{\left(\ast \right)}} \) , R K and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    ATLAS collaboration, Search for scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, New J. Phys. 18 (2016) 093016 [arXiv:1605.06035] [INSPIRE].
  32. [32]
    CMS collaboration, Search for third generation scalar leptoquarks decaying to a top quark and a tau lepton at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-16-028 (2017) [INSPIRE].
  33. [33]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  35. [35]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  36. [36]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  37. [37]
    CMS collaboration, Search for pair production of tau sleptons in \( \sqrt{s}=13 \) TeV pp collisions in the all-hadronic final state, CMS-PAS-SUS-17-003 (2017) [INSPIRE].
  38. [38]
    ATLAS collaboration, Search for charged Higgs bosons produced in association with a top quark and decaying via H ±τν using pp collision data recorded at \( \sqrt{s}=13 \) TeV by the ATLAS detector, Phys. Lett. B 759 (2016) 555 [arXiv:1603.09203] [INSPIRE].
  39. [39]
    ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, ATLAS-CONF-2016-089 (2016) [INSPIRE].
  40. [40]
    CMS collaboration, Search for charged Higgs bosons with the H ±τ ± ν τ decay channel in the fully hadronic final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-031 (2016) [INSPIRE].
  41. [41]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν τ in the τ + jets and τ + lepton final states with 36fb −1 of pp collision data recorded at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, JHEP 09 (2018) 139 [arXiv:1807.07915] [INSPIRE].
  42. [42]
    ATLAS collaboration, Search for charged Higgs bosons decaying into top and bottom quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 11 (2018) 085 [arXiv:1808.03599] [INSPIRE].
  43. [43]
    K. Agashe, R. Franceschini and D. Kim, Simpleinvarianceof two-body decay kinematics, Phys. Rev. D 88 (2013) 057701 [arXiv:1209.0772] [INSPIRE].ADSGoogle Scholar
  44. [44]
    K. Agashe, R. Franceschini and D. Kim, Using Energy Peaks to Measure New Particle Masses, JHEP 11 (2014) 059 [arXiv:1309.4776] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    CMS collaboration, Measurement of the top-quark mass from the b jet energy spectrum, CMS-PAS-TOP-15-002 (2015) [INSPIRE].
  46. [46]
    K. Agashe, R. Franceschini, D. Kim and K. Wardlow, Mass Measurement Using Energy Spectra in Three-body Decays, JHEP 05 (2016) 138 [arXiv:1503.03836] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Hoeche et al., Matching parton showers and matrix elements, in proceedings of the HERA and the LHC: A Workshop on the Implications of HERA for LHC Physics, CERN, Geneva, Switzerland, 26–27 March 2004, pp. 288–289 [hep-ph/0602031]  https://doi.org/10.5170/CERN-2005-014.288 [INSPIRE].
  49. [49]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  50. [50]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    A. Katz, M. Son and B. Tweedie, Ditau-Jet Tagging and Boosted Higgses from a Multi-TeV Resonance, Phys. Rev. D 83 (2011) 114033 [arXiv:1011.4523] [INSPIRE].ADSGoogle Scholar
  53. [53]
    CMS collaboration, Reconstruction and identification of τ lepton decays to hadrons and ντ at CMS, 2016 JINST 11 P01019 [arXiv:1510.07488] [INSPIRE].
  54. [54]
    ATLAS collaboration, Reconstruction, Energy Calibration and Identification of Hadronically Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC, ATL-PHYS-PUB-2015-045 (2015).
  55. [55]
    ATLAS and CMS collaborations, Identification and energy calibration of hadronic τ lepton decays at the LHC, in proceedings of the 5th Large Hadron Collider Physics Conference (LHCP 2017), Shanghai, China, 15–20 May 2017, arXiv:1709.01351 [INSPIRE].
  56. [56]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=8 \) TeV in dilepton final states containing one τ lepton, Phys. Lett. B 739 (2014) 23 [arXiv:1407.6643] [INSPIRE].
  57. [57]
    ATLAS collaboration, Search for direct top squark pair production in final states with two tau leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016)81 [arXiv:1509.04976] [INSPIRE].
  58. [58]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through \( \mathcal{O}\left({\alpha}_S^4\right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, W and Z/γ * boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.TH Department, CERNGenevaSwitzerland
  4. 4.Département de Physique Théorique and Center for Astroparticle Physics (CAP)Université de GenèveGeneva 4Switzerland
  5. 5.Ottawa-Carleton Institute for PhysicsCarleton UniversityOttawaCanada

Personalised recommendations