Advertisement

Testing the (0,2) mirror map

  • Marco BertoliniEmail author
Open Access
Regular Article - Theoretical Physics
  • 11 Downloads

Abstract

We test a proposed mirror map at the level of correlators for linear models describing the (0,2) moduli space of superconformal field theories with a (2,2) locus associated to Calabi-Yau hypersurfaces in toric varieties. We verify in non-trivial examples that the correlators are exchanged by the mirror map and we derive a correspondence between the observables of the A/2- and B/2-twisted theories. We also comment on the global structure of the (0,2) moduli space and present a simple non-renormalization argument for a large class of B/2 model subfamilies.

Keywords

Superstrings and Heterotic Strings Topological Strings Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Melnikov, S. Sethi and E. Sharpe, Recent Developments in (0, 2) Mirror Symmetry, SIGMA 8 (2012) 068 [arXiv:1209.1134] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    B.R. Greene and M.R. Plesser, Duality in Calabi-Yau Moduli Space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].
  3. [3]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].
  4. [4]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  5. [5]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, The Monomial divisor mirror map, alg-geom/9309007 [INSPIRE].
  6. [6]
    J. Distler and S. Kachru, Duality of (0, 2) string vacua, Nucl. Phys. B 442 (1995) 64 [hep-th/9501111] [INSPIRE].
  7. [7]
    J. Distler, B.R. Greene and D.R. Morrison, Resolving singularities in (0, 2) models, Nucl. Phys. B 481 (1996) 289 [hep-th/9605222] [INSPIRE].
  8. [8]
    M. Kreuzer, J. McOrist, I.V. Melnikov and M.R. Plesser, (0, 2) Deformations of Linear σ-models, JHEP 07 (2011) 044 [arXiv:1001.2104] [INSPIRE].
  9. [9]
    I.V. Melnikov and M.R. Plesser, A (0, 2) Mirror Map, JHEP 02 (2011) 001 [arXiv:1003.1303] [INSPIRE].
  10. [10]
    J. McOrist and I.V. Melnikov, Summing the Instantons in Half-Twisted Linear σ-models, JHEP 02 (2009) 026 [arXiv:0810.0012] [INSPIRE].
  11. [11]
    C. Closset, W. Gu, B. Jia and E. Sharpe, Localization of twisted \( \mathcal{N}=\left(0,\ 2\right) \) gauged linear σ-models in two dimensions, JHEP 03 (2016) 070 [arXiv:1512.08058] [INSPIRE].
  12. [12]
    C. Closset, N. Mekareeya and D.S. Park, A-twisted correlators and Hori dualities, JHEP 08 (2017) 101 [arXiv:1705.04137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Closset, S. Cremonesi and D.S. Park, The equivariant A-twist and gauged linear σ-models on the two-sphere, JHEP 06 (2015) 076 [arXiv:1504.06308] [INSPIRE].
  14. [14]
    D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, AMS, Providence, U.S.A. (2000) [INSPIRE].
  15. [15]
    V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  16. [16]
    M. Bertolini and M.R. Plesser, Worldsheet instantons and (0, 2) linear models, JHEP 08 (2015) 081 [arXiv:1410.4541] [INSPIRE].
  17. [17]
    D.R. Morrison and M.R. Plesser, Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].
  18. [18]
    D.R. Morrison and M.R. Plesser, Towards mirror symmetry as duality for two-dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) 177 [hep-th/9508107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. McOrist and I.V. Melnikov, Half-Twisted Correlators from the Coulomb Branch, JHEP 04 (2008) 071 [arXiv:0712.3272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    C. Vafa, Topological Landau-Ginzburg models, Mod. Phys. Lett. A 6 (1991) 337 [INSPIRE].
  21. [21]
    I.V. Melnikov and S. Sethi, Half-Twisted (0, 2) Landau-Ginzburg Models, JHEP 03 (2008) 040 [arXiv:0712.1058] [INSPIRE].
  22. [22]
    I.V. Melnikov, (0, 2) Landau-Ginzburg Models and Residues, JHEP 09 (2009) 118 [arXiv:0902.3908] [INSPIRE].
  23. [23]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, John Wiley & Sons, New York (1978) [DOI: https://doi.org/10.1002/9781118032527].
  24. [24]
    M. Bertolini and M. Romo, Aspects of (2, 2) and (0, 2) hybrid models, arXiv:1801.04100 [INSPIRE].
  25. [25]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Hybrid conformal field theories, JHEP 05 (2014) 043 [arXiv:1307.7063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Bertolini and M.R. Plesser, (0, 2) hybrid models, JHEP 09 (2018) 067 [arXiv:1712.04976] [INSPIRE].
  27. [27]
    R. Donagi, J. Guffin, S. Katz and E. Sharpe, A Mathematical Theory of Quantum Sheaf Cohomology, Asian J. Math. 18 (2014) 387 [arXiv:1110.3751] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R. Donagi, J. Guffin, S. Katz and E. Sharpe, Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties, Adv. Theor. Math. Phys. 17 (2013) 1255 [arXiv:1110.3752] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    R. Donagi, Z. Lu and I.V. Melnikov, Global aspects of (0, 2) moduli space: toric varieties and tangent bundles, Commun. Math. Phys. 338 (2015) 1197 [arXiv:1409.4353] [INSPIRE].
  30. [30]
    V.V. Batyrev and L.A. Borisov, On Calabi-Yau complete intersections in toric varieties, alg-geom/9412017 [INSPIRE].
  31. [31]
    V. Batyrev and B. Nill, Combinatorial aspects of mirror symmetry, math/0703456.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)The University of Tokyo Institutes for Advanced Study, The University of TokyoKashiwaJapan

Personalised recommendations