’t Hooft anomaly matching condition and chiral symmetry breaking without bilinear condensate

  • Satoshi YamaguchiEmail author
Open Access
Regular Article - Theoretical Physics


We explore 4-dimensional SU(N) gauge theory with a Weyl fermion in an irreducible self-conjugate representation. This theory, in general, has a discrete chiral symmetry. We use ’t Hooft anomaly matching condition of the center symmetry and the chiral symmetry, and find constraints on the spontaneous chiral symmetry breaking in the confining phase. The domain-walls connecting different vacua are discussed from the point of view of the ’t Hooft anomaly. We consider the SU(6) gauge theory with a Weyl fermion in the rank 3 anti-symmetric representation as an example. It is argued that this theory is likely to be in the confining phase. The chiral symmetry 6 should be spontaneously broken to 2 under the assumption of the confinement, although there cannot be any fermion bilinear condensate in this theory.


Anomalies in Field and String Theories Spontaneous Symmetry Breaking Confinement Discrete Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135.Google Scholar
  2. [2]
    C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal and Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies and deconfinement in quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    R. Kitano, T. Suyama and N. Yamada, θ = π in SU(N)/ℤ N gauge theories, JHEP 09 (2017) 137 [arXiv:1709.04225] [INSPIRE].
  10. [10]
    M. Yamazaki, Relatingt Hooft Anomalies of 4d Pure Yang-Mills and 2d ℂN − 1 Model, JHEP 10 (2018) 172 [arXiv:1711.04360] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    C. Cordova, P.-S. Hsin and N. Seiberg, Global Symmetries, Counterterms and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys. 4 (2018) 021 [arXiv:1711.10008] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of massless ℤ N -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Cherman and M. Ünsal, Critical behavior of gauge theories and Coulomb gases in three and four dimensions, arXiv:1711.10567 [INSPIRE].
  14. [14]
    C. Córdova, P.-S. Hsin and N. Seiberg, Time-Reversal Symmetry, Anomalies and Dualities in (2 + 1)d, SciPost Phys. 5 (2018) 006 [arXiv:1712.08639] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L.-Y. Hung, Y.-S. Wu and Y. Zhou, Linking Entanglement and Discrete Anomaly, JHEP 05 (2018) 008 [arXiv:1801.04538] [INSPIRE].
  16. [16]
    P. Draper, Domain Walls and the CP Anomaly in Softly Broken Supersymmetric QCD, Phys. Rev. D 97 (2018) 085003 [arXiv:1801.05477] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    M.M. Anber and E. Poppitz, Two-flavor adjoint QCD, Phys. Rev. D 98 (2018) 034026 [arXiv:1805.12290] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Córdova and T.T. Dumitrescu, Candidate Phases for SU(2) Adjoint QCD 4 with Two Flavors from \( \mathcal{N} \) = 2 Supersymmetric Yang-Mills Theory, arXiv:1806.09592 [INSPIRE].
  19. [19]
    M.M. Anber and E. Poppitz, Anomaly matching, (axial) Schwinger models and high-T super Yang-Mills domain walls, JHEP 09 (2018) 076 [arXiv:1807.00093] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Z. Bi and T. Senthil, An Adventure in Topological Phase Transitions in 3 + 1-D: Non-abelian Deconfined Quantum Criticalities and a Possible Duality, arXiv:1808.07465 [INSPIRE].
  22. [22]
    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    I.I. Kogan, A. Kovner and M.A. Shifman, Chiral symmetry breaking without bilinear condensates, unbroken axial Z(N) symmetry and exact QCD inequalities, Phys. Rev. D 59 (1999) 016001 [hep-ph/9807286] [INSPIRE].
  25. [25]
    T. Kanazawa, Chiral symmetry breaking with no bilinear condensate revisited, JHEP 10 (2015) 010 [arXiv:1507.06376] [INSPIRE].
  26. [26]
    E. Poppitz and M. Ünsal, Chiral gauge dynamics and dynamical supersymmetry breaking, JHEP 07 (2009) 060 [arXiv:0905.0634] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, arXiv:1511.08771 [INSPIRE].
  29. [29]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, NJ, U.S.A. (1992).zbMATHGoogle Scholar
  30. [30]
    E. Witten, An SU(2) Anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].
  32. [32]
    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. ’t Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].
  34. [34]
    G. ’t Hooft, Some Twisted Selfdual Solutions for the Yang-Mills Equations on a Hypertorus, Commun. Math. Phys. 81 (1981) 267 [INSPIRE].
  35. [35]
    E. Witten, Supersymmetric index in four-dimensional gauge theories, Adv. Theor. Math. Phys. 5 (2002) 841 [hep-th/0006010] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    J. Wang, X.-G. Wen and E. Witten, Symmetric Gapped Interfaces of SPT and SET States: Systematic Constructions, Phys. Rev. X 8 (2018) 031048 [arXiv:1705.06728] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    Y. Tachikawa, On gauging finite subgroups, arXiv:1712.09542 [INSPIRE].
  38. [38]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP 02 (2017) 090 [arXiv:1701.01404] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J. Wang, X.-G. Wen and E. Witten, A New SU(2) Anomaly, arXiv:1810.00844 [INSPIRE].
  41. [41]
    Y. Tachikawa and S. Terashima, Seiberg-Witten Geometries Revisited, JHEP 09 (2011) 010 [arXiv:1108.2315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations