Advertisement

Topological properties of CPN − 1 models in the large-N limit

  • Claudio BonannoEmail author
  • Claudio Bonati
  • Massimo D’Elia
Open Access
Regular Article - Theoretical Physics
  • 41 Downloads

Abstract

We investigate, by numerical simulations on a lattice, the θ-dependence of 2d CPN − 1 models for a range of N going from 9 to 31, combining imaginary θ and simulated tempering techniques to improve the signal-to-noise ratio and alleviate the critical slowing down of the topological modes. We provide continuum extrapolations for the second and fourth order coefficients in the Taylor expansion in θ of the vacuum energy of the theory, parameterized in terms of the topological susceptibility χ and of the so-called b2 coefficient. Those are then compared with available analytic predictions obtained within the 1/N expansion, pointing out that higher order corrections might be relevant in the explored range of N, and that this fact might be related to the non-analytic behavior expected for N = 2. We also consider sixth-order corrections in the θ expansion, parameterized in terms of the so-called b4 coefficient: in this case our present statistical accuracy permits to have reliable non-zero continuum estimations only for N ≤ 11, while for larger values we can only set upper bounds. The sign and values obtained for b4 are compared to large-N predictions, as well as to results obtained for SU(Nc) Yang-Mills theories, for which a first numerical determination is provided in this study for the case Nc = 2.

Keywords

1/N Expansion Lattice Quantum Field Theory Nonperturbative Effects 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Instantons, the Quark Model and the 1/n Expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n Expandable Series of Nonlinear σ-models with Instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. David, Instantons and Condensates in Two-dimensional CP (N − 1) Models, Phys. Lett. B 138 (1984) 139 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Shifman, Advanced topics in Quantum Field Theory, Cambridge University Press, Cambridge U.K. (2012), pg. 171, pg. 361.Google Scholar
  5. [5]
    M. Campostrini and P. Rossi, 1/N expansion of the topological susceptibility in the CP N − 1 models, Phys. Lett. B 272 (1991) 305 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Bonati, M. D’Elia, P. Rossi and E. Vicari, θ dependence of 4D SU(N ) gauge theories in the large-N limit, Phys. Rev. D 94 (2016) 085017 [arXiv:1607.06360] [INSPIRE].
  7. [7]
    P. Rossi, Effective Lagrangian of CP N − 1 models in the large N limit, Phys. Rev. D 94 (2016) 045013 [arXiv:1606.07252] [INSPIRE].ADSGoogle Scholar
  8. [8]
    L. Del Debbio, G.M. Manca, H. Panagopoulos, A. Skouroupathis and E. Vicari, Theta-dependence of the spectrum of SU(N) gauge theories, JHEP 06 (2006) 005 [hep-th/0603041] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Campostrini and P. Rossi, CP N − 1 models in the 1/N expansion, Phys. Rev. D 45 (1992) 618 [Erratum ibid. D 46 (1992) 2741] [INSPIRE].
  10. [10]
    L. Del Debbio, G.M. Manca, H. Panagopoulos, A. Skouroupathis and E. Vicari, Theta-dependence of the spectrum of SU(N) gauge theories, JHEP 06 (2006) 005 [hep-th/0603041] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Lucini, M. Teper and U. Wenger, Topology of SU(N) gauge theories at T = 0 and T = T(c), Nucl. Phys. B 715 (2005) 461 [hep-lat/0401028] [INSPIRE].
  12. [12]
    M. Cè, M. García Vera, L. Giusti and S. Schaefer, The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory, Phys. Lett. B 762 (2016) 232 [arXiv:1607.05939] [INSPIRE].
  13. [13]
    M. D’Elia, Field theoretical approach to the study of theta dependence in Yang-Mills theories on the lattice, Nucl. Phys. B 661 (2003) 139 [hep-lat/0302007] [INSPIRE].
  14. [14]
    L. Giusti, S. Petrarca and B. Taglienti, Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice, Phys. Rev. D 76 (2007) 094510 [arXiv:0705.2352] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Bonati, M. D’Elia, H. Panagopoulos and E. Vicari, Change of θ Dependence in 4D SU(N) Gauge Theories Across the Deconfinement Transition, Phys. Rev. Lett. 110 (2013) 252003 [arXiv:1301.7640] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Cè, C. Consonni, G.P. Engel and L. Giusti, Non-Gaussianities in the topological charge distribution of the SU(3) Yang-Mills theory, Phys. Rev. D 92 (2015) 074502 [arXiv:1506.06052] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Bonati, M. D’Elia and A. Scapellato, θ dependence in SU(3) Yang-Mills theory from analytic continuation, Phys. Rev. D 93 (2016) 025028 [arXiv:1512.01544] [INSPIRE].
  18. [18]
    M. Campostrini, P. Rossi and E. Vicari, Monte Carlo simulation of CP N − 1 models, Phys. Rev. D 46 (1992) 2647 [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Hasenbusch, Fighting topological freezing in the two-dimensional CPN-1 model, Phys. Rev. D 96 (2017) 054504 [arXiv:1706.04443] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Campostrini, P. Rossi and E. Vicari, Topological susceptibility and string tension in the lattice CP N − 1 models, Phys. Rev. D 46 (1992) 4643 [hep-lat/9207032] [INSPIRE].
  21. [21]
    M. Campostrini, A. Di Giacomo and H. Panagopoulos, The Topological Susceptibility on the Lattice, Phys. Lett. B 212 (1988) 206 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E. Vicari and H. Panagopoulos, Theta dependence of SU(N) gauge theories in the presence of a topological term, Phys. Rept. 470 (2009) 93 [arXiv:0803.1593] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.M. Manca and E. Vicari, Proprietá topologiche dei modelli CP N − 1, MSc Thesis, Universitá di Pisa, Pisa Italy (2003).Google Scholar
  24. [24]
    B. Alles, G. Boyd, M. D’Elia, A. Di Giacomo and E. Vicari, Hybrid Monte Carlo and topological modes of full QCD, Phys. Lett. B 389 (1996) 107 [hep-lat/9607049] [INSPIRE].
  25. [25]
    L. Del Debbio, G.M. Manca and E. Vicari, Critical slowing down of topological modes, Phys. Lett. B 594 (2004) 315 [hep-lat/0403001] [INSPIRE].
  26. [26]
    ALPHA collaboration, S. Schaefer, R. Sommer and F. Virotta, Critical slowing down and error analysis in lattice QCD simulations, Nucl. Phys. B 845 (2011) 93 [arXiv:1009.5228] [INSPIRE].
  27. [27]
    C. Bonati and M. D’Elia, Topological critical slowing down: variations on a toy model, Phys. Rev. E 98 (2018) 013308 [arXiv:1709.10034] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [INSPIRE].
  29. [29]
    M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].
  30. [30]
    B. Alles and A. Papa, Mass gap in the 2D O(3) non-linear σ-model with a θ = π term, Phys. Rev. D 77 (2008) 056008 [arXiv:0711.1496] [INSPIRE].ADSGoogle Scholar
  31. [31]
    B. Alles and A. Papa, Numerical Evidence for the Haldane Conjecture, arXiv:0811.1528 [INSPIRE].
  32. [32]
    B. Alles, M. Giordano and A. Papa, Behavior near θ = π of the mass gap in the two-dimensional O(3) non-linear σ-model, Phys. Rev. B 90 (2014) 184421 [arXiv:1409.1704] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Aoki et al., The Electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta, arXiv:0808.1428 [INSPIRE].
  34. [34]
    H. Panagopoulos and E. Vicari, The 4D SU(3) gauge theory with an imaginary θ term, JHEP 11 (2011) 119 [arXiv:1109.6815] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    M. D’Elia and F. Negro, θ dependence of the deconfinement temperature in Yang-Mills theories, Phys. Rev. Lett. 109 (2012) 072001 [arXiv:1205.0538] [INSPIRE].
  36. [36]
    M. D’Elia and F. Negro, Phase diagram of Yang-Mills theories in the presence of a θ term, Phys. Rev. D 88 (2013) 034503 [arXiv:1306.2919] [INSPIRE].ADSGoogle Scholar
  37. [37]
    F.K. Guo et al., The electric dipole moment of the neutron from 2 + 1 flavor lattice QCD, Phys. Rev. Lett. 115 (2015) 062001 [arXiv:1502.02295] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C. Bonati, M. Cardinali and M. D’Elia, θ dependence in trace deformed SU(3) Yang-Mills theory: a lattice study, Phys. Rev. D 98 (2018) 054508 [arXiv:1807.06558] [INSPIRE].
  39. [39]
    E. Vicari, Monte Carlo simulation of lattice CP N − 1 models at large N, Phys. Lett. B 309 (1993) 139 [hep-lat/9209025] [INSPIRE].
  40. [40]
    E. Marinari and G. Parisi, Simulated tempering: A New Monte Carlo scheme, Europhys. Lett. 19 (1992) 451 [hep-lat/9205018] [INSPIRE].
  41. [41]
    A. Laio, G. Martinelli and F. Sanfilippo, Metadynamics surfing on topology barriers: the CP N − 1 case, JHEP 07(2016) 089[arXiv:1508.07270] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    T. Rindlisbacher and P. de Forcrand, Worm algorithm for the CP N − 1 model, Nucl. Phys. B 918 (2017) 178 [arXiv:1610.01435] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    B. Berg and M. Lüscher, Definition and Statistical Distributions of a Topological Number in the Lattice O(3) σ-model, Nucl. Phys. B 190 (1981) 412 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Caracciolo and A. Pelissetto, Corrections to finite size scaling in the lattice N vector model for N = ∞, Phys. Rev. D 58 (1998) 105007 [hep-lat/9804001] [INSPIRE].
  45. [45]
    B. Berg, Dislocations and Topological Background in the Lattice O(3) σ Model, Phys. Lett. B 104 (1981) 475 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 1403 (2014) 092] [arXiv:1006.4518] [INSPIRE].
  47. [47]
    B. Alles, L. Cosmai, M. D’Elia and A. Papa, Topology in 2 − D CP N − 1 models on the lattice: A Critical comparison of different cooling techniques, Phys. Rev. D 62 (2000) 094507 [hep-lat/0001027] [INSPIRE].
  48. [48]
    C. Bonati and M. D’Elia, Comparison of the gradient flow with cooling in SU(3) pure gauge theory, Phys. Rev. D 89 (2014) 105005 [arXiv:1401.2441] [INSPIRE].ADSGoogle Scholar
  49. [49]
    C. Alexandrou, A. Athenodorou and K. Jansen, Topological charge using cooling and the gradient flow, Phys. Rev. D 92 (2015) 125014 [arXiv:1509.04259] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Aguado and M. Asorey, Theta-vacuum and large N limit in CP N − 1 σ-models, Nucl. Phys. B 844 (2011) 243 [arXiv:1009.2629] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    J. Flynn, A. Juttner, A. Lawson and F. Sanfilippo, Precision study of critical slowing down in lattice simulations of the CP N − 1 model, arXiv:1504.06292 [INSPIRE].
  52. [52]
    A. Jevicki, Quantum Fluctuations of Pseudoparticles in the Nonlinear σ-model, Nucl. Phys. B 127 (1977) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Förster, On the Structure of Instanton Plasma in the Two-Dimensional O(3) Nonlinear σ-model, Nucl. Phys. B 130 (1977) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    V.A. Fateev, I.V. Frolov and A.S. Shvarts, Quantum Fluctuations of Instantons in the Nonlinear σ-model, Nucl. Phys. B 154 (1979) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    B. Berg and M. Lüscher, Computation of Quantum Fluctuations Around Multi-Instanton Fields from Exact Greens Functions: The CP n − 1 Case, Commun. Math. Phys. 69 (1979) 57 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    J.-L. Richard and A. Rouet, The CP 1 Model on the Torus: Contribution of Instantons, Nucl. Phys. B 211 (1983) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Blatter, R. Burkhalter, P. Hasenfratz and F. Niedermayer, Instantons and the fixed point topological charge in the two-dimensional O(3) σ-model, Phys. Rev. D 53 (1996) 923 [hep-lat/9508028] [INSPIRE].
  58. [58]
    M. D’Elia, F. Farchioni and A. Papa, Renormalization group flow and fixed point of the lattice topological charge in the two-dimensional O(3) σ-model, Phys. Rev. D 55 (1997) 2274 [hep-lat/9511021] [INSPIRE].
  59. [59]
    S. Giombi and I.R. Klebanov, One Loop Tests of Higher Spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    A. Jevicki, K. Jin and J. Yoon, 1/N and loop corrections in higher spin AdS 4 /CFT 3 duality, Phys. Rev. D 89 (2014) 085039 [arXiv:1401.3318] [INSPIRE].ADSGoogle Scholar
  61. [61]
    D. Diakonov and M. Maul, On statistical mechanics of instantons in the CP (N(c)−1) model, Nucl. Phys. B 571 (2000) 91 [hep-th/9909078] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    J.O. Andersen, D. Boer and H.J. Warringa, The Effects of quantum instantons on the thermodynamics of the CP N − 1 model, Phys. Rev. D 74 (2006) 045028 [hep-th/0602082] [INSPIRE].ADSGoogle Scholar
  63. [63]
    Y. Lian and H.B. Thacker, Small Instantons in CP 1 and CP 2 σ-models, Phys. Rev. D 75 (2007) 065031 [hep-lat/0607026] [INSPIRE].
  64. [64]
    M. Creutz, Monte Carlo Study of Quantized SU(2) Gauge Theory, Phys. Rev. D 21 (1980) 2308 [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    A.D. Kennedy and B.J. Pendleton, Improved Heat Bath Method for Monte Carlo Calculations in Lattice Gauge Theories, Phys. Lett. B 156 (1985) 393 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Creutz, Overrelaxation and Monte Carlo Simulation, Phys. Rev. D 36 (1987) 515 [INSPIRE].ADSMathSciNetGoogle Scholar
  67. [67]
    J. Fingberg, U.M. Heller and F. Karsch, Scaling and asymptotic scaling in the SU(2) gauge theory, Nucl. Phys. B 392 (1993) 493 [hep-lat/9208012] [INSPIRE].
  68. [68]
    F. Bigazzi, A.L. Cotrone and R. Sisca, Notes on Theta Dependence in Holographic Yang-Mills, JHEP 08 (2015) 090 [arXiv:1506.03826] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    S. Dubovsky, A. Lawrence and M.M. Roberts, Axion monodromy in a model of holographic gluodynamics, JHEP 02 (2012) 053 [arXiv:1105.3740] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    Y. Abe, K. Fukushima, Y. Hidaka, H. Matsueda, K. Murase and S. Sasaki, Image-processing the topological charge density in the ℂP N − 1 model, arXiv:1805.11058 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Università di Pisa and INFN Sezione di PisaPisaItaly

Personalised recommendations