Journal of Rubber Research

, Volume 20, Issue 2, pp 71–86 | Cite as

Utilisation of Zinc Dimethacrylate as Coagent in Sulfur-Peroxide Dual Vulcanisation with Different Sulfur Systems for Styrene-Butadiene Rubber Compounds

  • W. Naebpetch
  • N. Nithi-Uthai
  • A. SaetungEmail author
  • B. Junhasavasdikul
  • W. KaewsakulEmail author


The influences of zinc dimethacrylate (ZDMA) contents and three different sulfur systems, i.e. conventional, semi-efficient, and efficient vulcanisations or CV, semi-EV and EV, respectively on crosslink densities and comparative properties of styrene-butadiene rubber compounds containing a fixed amount of peroxide used as an additional crosslinkerwere investigated. The results of cure characteristics and total/specific crosslink densities in different linkage types clearly confirm that, besides synergistic effect of ZDMA towards improved peroxide cure, the extraordinary ionic crosslinks can be generated by this substance, leading to considerable rises in modulus and strength of vulcanisate. However, its ionic-crosslinking efficiency is potentially lessened with increasing sulfur proportion. Elasticity indicated by loss tangent and heat build-up of vulcanisate increases with increasing ZDMA contents due to a higher total crosslink density. The overall properties of CV-based compounds have shown to be independent on ZDMA loading levels. Semi-EV and EV systems provide superior thermal ageing resistance to the vulcanisate compared to CV system due to a greater proportion of short crosslinking bonds: mono-/disulfidic, and carbon-carbon linkages, in EV and semi-EV cured stocks. In addition, the increment of ZDMA contents appears to improve heat-ageing properties of the vulcanisate, attributed to a better thermal stability of ionic crosslinks.


Sulfur peroxide zinc dimethacrylate vulcanisation crosslink 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    HOFMANN, W. (1989) Rubber Chemicals and Additives. In: Rubber Technology Handbook. New York: Carl HanserGoogle Scholar
  2. 2.
    RADER, C.P. (2001) Vulcanisation of Rubber - A. Sulfur and Non-Peroxides. In: Basic Elastomer Technology. Baranwal, K.C. and Stephens, H.L. (ed.) Ohio: Rubber Division, American Chemical Society.Google Scholar
  3. 3.
    MORI, M. (2003) Study of Vulcanisation and Degradation Chemistry in Natural Rubber by Solid-State 13C NMR and Physical Property Measurements. Rubber Chem. Technol., 76(5), 1259–1275.CrossRefGoogle Scholar
  4. 4.
    CHEN, C.H., KOENIG, J.L., SHELTON, J.R. AND COLLINS, E.A. (1981) Characterization of the Reversion Process in Accelerated Sulfur Curing of Natural Rubber. Rubber Chem. Technol., 54(4), 734–750.CrossRefGoogle Scholar
  5. 5.
    SHANKAR, U. (1952) Investigations of the Reversion of Vulcanisate Rubber under Heat. Rubber Chem. Technol., 25(2), 241–250.CrossRefGoogle Scholar
  6. 6.
    AKIBA, M. AND HASHIM, A.S. (1997) Vulcanisation and Crosslinking in Elastomers. Prog. Polym. Sci., 22(3), 475–521.CrossRefGoogle Scholar
  7. 7.
    BRODSKY, G.I. (1994) Mixed Peroxide-Sulfur Rubber Curing System. Rubber World, 210(5), 31–39.Google Scholar
  8. 8.
    VANBEVERVOORDE-MEILOF, E.E., VAN HAERINGEN-TRIFONOVA, D., VANCSO, G.J., DOES VAN DER, L., BANTJES, A. AND NOORDERMEER, J.W.M. (2000) Cross-link Clusters: Reality or Fiction? Kautch. Gummi Kunstst., 53(7/8). 426–432.Google Scholar
  9. 9.
    HENNING, S.K. AND COSTIN, R. (2006) Fundamentals of Curing Elastomers with Peroxides and Coagents. Rubber World, 233, 28–35.Google Scholar
  10. 10.
    FLORY, P.J. (1950) Statistical Mechanics of Swelling of Network Structures. J. Chem. Phys., 18(1), 108–111.CrossRefGoogle Scholar
  11. 11.
    GEORGE, S.C., NINAN, K.N. AND THOMAS, S. (1999) Effect of Degree of Crosslinking on Swelling and Mechanical Behavior of Conventionally Vulcanisate Styrene-Butadiene Rubber Membranes. Polym. Polym. Compos., 7, 343–353.Google Scholar
  12. 12.
    SAVILLE, B. AND WATSON, A.A. (1967) Structural Characterization of Sulfur-Vulcanisate Rubber Networks. Rubber Chem. Technol., 40(1), 100–148.CrossRefGoogle Scholar
  13. 13.
    NIE, Y., HUANG, G., QU, L., ZHANG, P., WENG, G. AND WU, J. (2010) Cure Kinetics and Morphology of Natural Rubber Reinforced by the In Situ Polymerisation of Zinc Dimethacrylate. J. Appl. Polym. Sci., 115(1), 99–106.CrossRefGoogle Scholar
  14. 14.
    ZHAO, J., GHEBREMESKEL, G.N., PEASELY, J. AND NECHES, P. (2001) Properties of EPDM/SBR Blends Cured with Peroxide and Sulfur Coagent. Kautch. Gummi Kunstst., 54(5), 223–228.Google Scholar
  15. 15.
    LOAN, L.D. (1971) Chemical Transformations of Polymers: Peroxide Crosslinking Reactions of Polymers. Rado, R. (ed.) Bratislava: International Union of Pure and Applied Chemistry (TUPAC).Google Scholar
  16. 16.
    CLASS, J.B. AND DLUZNESKI, P.R. (2001) Basic Elastomer Technology: Vulcanisation of Rubber - B. Peroxides. Baranwal, K.C. and Stephens, H.L. (eds.) Ohio: Rubber Division, American Chemical Society.Google Scholar
  17. 17.
    BAIN, P.J.S. AND DIBBO, A. (1968) Delayed Action Acceleration for Vulcanisation of Rubber. US Patent: 3406141, UK.Google Scholar
  18. 18.
    FUJIO, R., KITAYAMA, M., KATAOKA, N. ANDANZAI, S. (1979) Effectsof Sulfur on the Peroxide Cure of EPDM and Divinylbenzene Compounds. Rubber Chem. Technol., 52(1), 74–83.CrossRefGoogle Scholar
  19. 19.
    HALL, D.E. AND MORELAND, J.C. (2000) Fundamentals of Rolling Resistance. Proceedings of the American Chemical Society - Rubber Division Conference, Dallas, TX.Google Scholar
  20. 20.
    PALYS, L.H. AND CALLAIS, P.A. (2003) Understanding Organic Peroxides to Obtain Optimal Crosslinking Performance. Rubber World, 229(3), 35–41.Google Scholar
  21. 21.
    MCELWEE, C.B. AND LOHR, J.E. (2001) Comparing Curing Systems: Peroxide-Coagent versus Sulphur-Accelerator in Polyisoprene. Rubber World, 225, 41–44.Google Scholar
  22. 22.
    MCELWEE, C.B. AND BURKE, J.S. (2003) Use of Coagents for Adhesive and Dynamic Property Improvements in Peroxide-cured IR. Rubber World, 228, 36–41.Google Scholar
  23. 23.
    BATEMAN, L. (1963) The Chemistry and Physics of Rubber-Like Substances. London: MacLaren Press.Google Scholar

Copyright information

© The Malaysian Rubber Board 2017

Authors and Affiliations

  1. 1.Department of Rubber Technology and Polymer ScienceFaculty of Science and Technology, Prince of Songkla UniversityThailand
  2. 2.Department of Research and DevelopmentChemical Innovation Company LimitedBangkokThailand
  3. 3.Department of Materials Science and TechnologyFaculty of Science, Prince of Songkla UniversityThailand

Personalised recommendations