Advertisement

Journal of Rubber Research

, Volume 20, Issue 1, pp 20–32 | Cite as

Study on the Stress Relaxation of Nano Clay-Rubber Nanocomposites Considering Standard Linear Solid Model

  • S. Mohammadian-GezazEmail author
  • M. Karrabi
Article

Abstract

The effects of nano fillers were studied on the viscoelastic behaviour of NR nanocomposites. Elastic (S’) and viscous (S”) cure torques were larger for higher filler concentration. However, the change in nano clay (NC) content has more effects on S” than S’, comparing with carbon black (CB). Besides, the peak region of S” curve became broader as NC concentration increased and disappeared at 15 phr NC. The effect of CB was clear at concentration above 10 phr, while NC was effective even under 10 phr. Viscoelastic parameters were calculated using standard linear solid (SLS) model and the relaxation curves from SLS model were plotted along with the experimental results. Presence of more amounts of CB and NC led to an increase in the relaxation slope and a higher relaxation modulus at the beginning. In uncured ones, final modulus was near to zero. After curing, initial and final modulus were meaningfully higher. With increasing reinforcement concentration, relaxation time decreased, especially for NC nano filler. Regarding the changes in parameters of model, it was concluded both elastic and viscous motions are considerably more in the presence of higher nano filler levels.

Keywords

Nano clay carbon black rubber compound curing relaxation standard linear solid model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    YAN, N., WU, J. K., ZHAN, Y. H. AND XIA, H. S. (2009) Carbon Nanotubes/Carbon Black Synergistic Reinforced Natural Rubber Composites. Plast. Rubber Compos., 38(7), 290–296.Google Scholar
  2. 2.
    ALEX, R., SASIDHARAN, K. K., KURIAN, T. AND CHANDRA, A. K. (2011) Carbon Black Master Batch from Fresh Natural Rubber Latex. Plast. Rubber Compos., 40(8), 420–424.Google Scholar
  3. 3.
    ALBERDI, A., GIL-NEGRETE, N. AND KARI, L. (2012) Influence of Carbon Black and Plasticizers on Dynamic Properties of Isotropic Magnetosensitive Natural Rubber. Plast. Rubber Compos., 41(7), 310–317.Google Scholar
  4. 4.
    KUESENG, P., SAE-OUI, P. AND RATTANASOM, N. (2013) Mechanical and Electrical Properties of Natural Rubber and Nitrile Rubber Blends Filled with Multi-Wall Carbon Nanotube: Effect of Preparation Methods. Polym. Test, 32(4), 731–738.Google Scholar
  5. 5.
    NABIL, H., ISMAIL, H. AND AZURA, A.R. (2013) Compounding, Mechanical and Morphological Properties of Carbon-Black-Filled Natural Rubber/Recycled Ethylene-Propylene-Diene-Monomer Blends. Polym. Test, 32(2), 385–393.Google Scholar
  6. 6.
    NIMPAIBOON, A., AMNUAYPORNSRI, S. AND SAKDAPIPANICH, J. (2013) Influence of Gel Content on the Physical Properties of Unfilled and Carbon Black Filled Natural Rubber Vulcanizates. Polym. Test, 32(6), 1135–1144.Google Scholar
  7. 7.
    DONG, B., LIU, C. AND WU, Y.P (2014) Fracture and Fatigue of Silica/Carbon Black/ Natural Rubber Composites. Polym. Test, 38(6), 40–45.Google Scholar
  8. 8.
    JUNKONG, P., KUESENG, P., WIRASATE, S., HUYNH, C. AND RATTANASOM, N. (2015) Cut Growth and Abrasion Behaviour and Morphology of Natural Rubber Filled with MWCNT and MWCNT/Carbon Black. Polym. Test, 41(1), 172–183.Google Scholar
  9. 9.
    BARRES, C., MONGRUEL, A., CARTAULT, M. AND LE BLANC, J.L. (2003) Linear and Nonlinear Viscoelasticity of Carbon Black Filled Elastomers: Use of Complementary Rheological Characterizations. J. Appl. Polym. Sci., 87(1), 31–34.Google Scholar
  10. 10.
    KARRABI, M. AND MOHAMMADIAN, S. (2010) Study on the Cure Characteristics and Viscoelastic Behavior of Different Styrene Butadiene Rubber Compounds Using RPA. J. vinyl. Addit. Tech., 16(3), 209–216.Google Scholar
  11. 11.
    KARRABI, M. AND MOHAMMADAN, S. (2011) Characterization the Effects of Nano Particle Carbon Black on the Linear and Nonlinear Viscoelasticity of Uncured and Cured SBR Compounds. Iran. Polym. J., 20(1), 15–27.Google Scholar
  12. 12.
    HU, X., LUO, W., LIU, X., LI, M., HUANG, Y. AND BU, J. (2013) Temperature and Frequency Dependent Rheological Behaviour of Carbon Black Filled Natural Rubber. Plast. Rubber Compost, 42(10), 416–420.Google Scholar
  13. 13.
    SEMSARZADEH, M. A., BAKHSHANDEH, G.R. AND GHASEMZADEH, M. (2005) Effect of Carbon Black on Rate Constant and Activation Energy of Vulcanization in EPDM/BR and EPDM/NR Blends. Iran Polym. J., 14(6), 573–578.Google Scholar
  14. 14.
    TJONG, S. C. (2006) Structural and Mechanical Properties of Polymer Nanocomposites. Mater. Sci. Eng., 53(3), 73–197.Google Scholar
  15. 15.
    HUSSAIN, F., HOJJATI, M., OKANOTO, M. AND GORGA, RE. (2006) Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application. J. Compos. Mater, 40(5), 1511–1575.Google Scholar
  16. 16.
    PEGORETTI, A., DORIGATO, A. AND PENATI, A. (2007) Tensile Mechanical Response Of Polyethylene-Clay Nanocomposites. Exp. Polym. Lett, 1(3), 123–131.Google Scholar
  17. 17.
    ARROYO, M., LOPEZ-MANCHADO, M.A., VALENTIN, J.L. AND CARRETERO, J. (2007) Nanocomposites Based on Natural Rubber/Epoxidized Natural Rubber Blends. J., Compos. Sci. Technol, 67(7), 1330–1339.Google Scholar
  18. 18.
    YAN, N., XIA, H.S., ZHAN, Y.H., FEI, G.X. AND CHEN, C. (2012) Co-Compatibilising Effect of Carbon Nanotubes and Liquid Isoprene Rubber on Carbon Black Filled Natural Rubber/Polybutadiene Rubber Blend. Plast. Rubber. Compos., 41(9), 365–372.Google Scholar
  19. 19.
    VARGHESE, S., KARGER-KOCSIS, J. AND GATOS, K.G (2003) Melt Compounded Epoxidized Natural Rubber/Layered Silicate Nanocomposites: Structure-Properties Relationships. Polymer, 44(14), 3977–3983.Google Scholar
  20. 20.
    KARGER-KOCSIS, J. AND WU, M. (2004) Thermoset Rubber/Layered Silicate Nanocomposites: Status and Future Trends. Polym. Eng. Sci., 44(6), 1083–1093.Google Scholar
  21. 21.
    VARGHESE, S. AND KARGER-KOCSIS, J. (2004) Melt-Compounded Natural Rubber Nanocomposites with Pristine and Organophilic Layered Silicates of Natural and Synthetic Origin. J. Appl. Polym. Sci, 91(2), 813–819.Google Scholar
  22. 22.
    MA, Y., LI, Q., ZHANG, L. AND WU, Y. (2007) Role of Stearic Acid in Preparing EPDM/Clay Nanocomposites by Melt Compounding. Polym. J., 39(1), 48–54.Google Scholar
  23. 23.
    MOUSA, A. AND KARGER-KOCSIS, J. (2001) Rheological and Thermodynamical Behavior of Styrene/Butadiene Rubber-Organoclay Nanocomposites. Macromol. Mater. Eng., 286(4), 260–266.Google Scholar
  24. 24.
    DAS, A., JURK, R., STOCKELHUBER, K. W. AND HEINRICH, G. (2008) Effect of Vulcanization Ingredients on the Intercalation-Exfoliation Process of Layered Silicate in An Acrylonitrile Butadiene Rubber Matrix. Macromol. Mater. Eng., 293(6), 479–490.Google Scholar
  25. 25.
    MATHEW, S. AND VARGHESE, S. (2005) Natural Rubber Latex-Based Nanocomposites with Layered Silicates. J. Rubb. Res., 8(1), 1–15.Google Scholar
  26. 26.
    JACOB, A., KURIAN, P. AND APREM, A.S. (2007) Cure Characteristics and Mechanical Properties of Natural Rubber-Layered Clay Nanocomposites. Int. J. Polym. Mater., 56(6), 593–604.Google Scholar
  27. 27.
    ISMAIL, N., ARIS, A. AND MANROSHAN, S. (2008) Some Properties of Carbon Nanotube Filled Natural Rubber Using Rubber Latex Masterbatch Technique. MRB Rubb. Technol. Dev., 8(1), 30–34.Google Scholar
  28. 28.
    MEERA, A.P., SAID S., GROHENS, Y. AND THOMAS, S. (2009) Nonlinear Viscoelastic Behavior of Silica-Filled Natural Rubber Nanocomposites. J. Phys. Chem. C, 113(42), 17997–18002.Google Scholar
  29. 29.
    LIU, Y.B., LI, L., AND WANG, Q. (2010) Reinforcement of Natural Rubber with Carbon Black/Nanoclay Hybrid Filler. Plast. Rubber. Compos., 39(8), 370–376.Google Scholar
  30. 30.
    AZIRA, A. (2013) Carbon Nanotube Polymer Nanocomposites. MRB Rubb. Technol. Dev., 13(2), 18–21.Google Scholar
  31. 31.
    ISMAIL, H., SALLEH, S.Z. AND AHMAD, Z. (2013) Properties of Halloysite Nanotube (HNT) Filled SMR L and ENR 50 Nanocomposites. Int. J. Polym. Mater., 62(6), 314–322.Google Scholar
  32. 32.
    SOOKYUNG, U., NAKASON, C., THAIJAROEN, W. AND VENNEMANN, N. (2014) Influence of Modifying Agents of Organoclay on Properties of Nanocomposites Based on Natural Rubber. Polym. Test, 33(1), 48–56.Google Scholar
  33. 33.
    PRIVALKO, V.P., PONOMARENKOAM, S., PRIVALKO, E., SCHON, F. AND GRONSKI, W. (2005) Thermoelasticity and Stress Relaxation Behavior of Polychloroprene/ Organoclay Nanocomposites. Euro. Polym. J., 41(12), 3042–3050.Google Scholar
  34. 34.
    MOHOMANE, S.M., DJOKOVIC, V., THOMAS, S. AND LUYT, A.S. (2011) Polychloroprene Nanocomposites Filled with Different Organically Modified Clays: Morphology, Thermal Degradation and Stress Relaxation Behavior. Polym. Test, 30(5), 585–593.Google Scholar
  35. 35.
    MARIA, H.J., LYCZKO, N., NZIHOU, A., JOSEPH, K., MATHEW, C. AND THOMAS, S. (2014) Stress Relaxation Behavior of Organically Modified Montmorillonite Filled Natural Rubber/Nitrile Rubber Nanocomposites. Appl. Clay Sci., 87(1), 120–128.Google Scholar
  36. 36.
    MEERA, A.P., SAID, S., GROHENS, Y., LUYT, A.S. AND THOMAS, S. (2009) Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 48(7), 3410–3416.Google Scholar

Copyright information

© The Malaysian Rubber Board 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringPayame noor UniversityTehranIran
  2. 2.Iran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations