Advertisement

The Journal of Physiological Sciences

, Volume 65, Supplement 2, pp S29–S35 | Cite as

The estrous cycle modulates voltage-gated ion channels in trigeminal ganglion neurons

  • Wachirapong Saleeon
  • Ukkrit Jansri
  • Anan Srikiatkhachorn
  • Saknan Bongsebandhu-phubhakdiEmail author
Original Paper
  • 5 Downloads

Abstract

Migraines typically occur more frequently in women than men because of the effects of estrogen on both the frequency and severity of migraine attacks. Many women suffer from migraine attacks during menstruation, which are known as menstrual migraines. The pathophysiology of menstrual migraines can be explored by using the rat estrous cycle, which shows a cyclical fluctuation of estrogen level that resembles the menstrual cycle. The aim of this study was to investigate whether different stages of the estrous cycle are involved in migraine development by comparing the excitability of trigeminal ganglion (TG) neurons in four different stages of the estrous cycle by using action potential (AP) parameter assessments. The stages of the estrous cycle were identified by a vaginal smear and measuring the estrogen levels in collected blood. The proestrus and estrus stages had higher estrogen levels compared with the diestrus and metestrus stages. Whole-cell patch clamp recordings demonstrated that TG neurons in the proestrus and estrus stage had lower AP threshold, lower rheobase, higher AP height, shorter AP falling time and deeper afterhyperpolarization (AHP) depth. Hence, our results revealed that the high level of estrogen in the proestrus and estrus stage alters the AP properties of TG neurons. Estrogen may increase membrane excitability and the summation of cellular responses, which alters the AP properties. The alterations of the AP properties in the proestrus and estrus stage may relate to a modification of voltage-gated ion channels in TG neurons, which is a pathogenesis for menstrual migraine. No COI.

Keywords

Menstrual migraine Estrous cycle Trigeminal ganglion (TG) neurons Whole-cell patch clamp recording Voltage-sensitive ion channels 

References

  1. 1.
    Couturier EG, Bomhof MA, Neven AK, van Duijn NP (2003) Menstrual migraine in a representative Dutch population sample: prevalence, disability and treatment. Cephalalgia 23: 302–308CrossRefGoogle Scholar
  2. 2.
    Stovner LJ, Zwart JA, Hagen K, Terwindt GM, Pascual J (2006) Epidemiology of headache in Europe. Eur J Neurol 13: 333–345CrossRefGoogle Scholar
  3. 3.
    Dao TT, LeResche L (2000) Gender differences in pain. J Orofac Pain 14:169–184PubMedGoogle Scholar
  4. 4.
    Tassorelli C, Greco R, Allena M, Terreno E, Nappi RE (2012) Transdermal hormonal therapy in perimenstrual migraine: why, when and how? Curr Pain Headache Rep 16: 467–473CrossRefGoogle Scholar
  5. 5.
    Staley K, Scharfman H (2005) A woman’s prerogative. Nat Neurosci. 8: 697–699CrossRefGoogle Scholar
  6. 6.
    Martin VT, Lee J, Behbehani MM (2007) Sensitization of the trigeminal sensory system during different stages of the rat estrous cycle: implications for menstrual migraine. Headache 47: 552–563CrossRefGoogle Scholar
  7. 7.
    LeResche L, Mancl L. Sherman JJ, Gandara B, Dworkin SF (2003) Changes in temporomandibular pain and other symptoms across the menstrual cycle. Pain 106: 253–261CrossRefGoogle Scholar
  8. 8.
    Amandusson A, Blomqvist A (2013) Estrogenic influences in pain processing. Front Neuroendocrinol 34: 329–349CrossRefGoogle Scholar
  9. 9.
    Martin VT, Behbehani M (2006) Ovarian hormones and migraine headache: Understanding mechanisms and pathogenesis - Part I. Headache 46: 3–23CrossRefGoogle Scholar
  10. 10.
    Bi RY, Ding Y, Gan YH (2015) A new hypothesis of sexdifferences in temporomandibular disorders: estrogen enhances hyperalgesia of inflamed TMJ through modulating voltagegated sodium channel 1.7 in trigeminal ganglion? Med Hypotheses 84: 100–103CrossRefGoogle Scholar
  11. 11.
    Wang Q, Cao J, Hu F, Lu R, Wang J, Ding H, Gao R, Xiao H (2013) Effects of estradiol on voltage-gated sodium channels in mouse dorsal root ganglion neurons. Brain Res 1512: 1–8CrossRefGoogle Scholar
  12. 12.
    Hu F, Wang Q, Wang P, Wang W, Qian W, Xiao H, Wang L (2012) 17beta-Estradiol regulates the gene expression of voltage-gated sodium channels: role of estrogen receptor alpha and estrogen receptor beta. Endocrine 41: 274–280CrossRefGoogle Scholar
  13. 13.
    Du J, Wang Q, Hu F, Wang J, Ding H, Gao R, Xiao H, Wang L (2014) Effects of estradiol on voltage-gated potassium channels in mouse dorsal root ganglion neurons. J Membr Biol 247: 541–548CrossRefGoogle Scholar
  14. 14.
    Norris ML, Adams CE (1979) Exteroceptive factors, sexual maturation and reproduction in the female rat. Lab Anim 13: 283–286CrossRefGoogle Scholar
  15. 15.
    Puri V, Puri S, Svojanovsky SR, Mathur S, Macgregor RR, Klein RM, Welch KM, Berman NE (2006) Effects of oestrogen on trigeminal ganglia in culture: implications for hormonal effects on migraine. Cephalalgia 26: 33–42CrossRefGoogle Scholar
  16. 16.
    Yener T, Turkkani Tunc A, Aslan H, Aytan H, Cantug Caliskan A (2007) Determination of oestrous cycle of the rats by direct examination: how reliable? Anat Histol Embryol 36: 75–77CrossRefGoogle Scholar
  17. 17.
    Malin SA, Davis BM, Molliver DC (2007) Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nature Protocols 2: 152–160CrossRefGoogle Scholar
  18. 18.
    Eckert SP, Taddese A, McCleskey EW (1997) Isolation and culture of rat sensory neurons having distinct sensory modalities. J Neurosci Methods 77: 183–190CrossRefGoogle Scholar
  19. 19.
    Flake NM, Bonebreak DB, Gold MS (2005) Estrogen and inflammation increase the excitability of rat temporomandibular joint afferent neurons. J Neurophysiol 93: 1585–1597CrossRefGoogle Scholar
  20. 20.
    Junsre U, Bongsebandhu-phubhakdi S (2014) ASICs Alteration by pH Change in Trigeminal Ganglion Neurons. J Physiol Biomed Sci 27: 20–25Google Scholar
  21. 21.
    Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F (2008) The differential expression of low-threshold K (+) currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurones. Journal of Physiology-London 586: 5101–5118CrossRefGoogle Scholar
  22. 22.
    Adams JP, Anderson AE, Varga AW, Dineley KT, Cook RG, Pfaffinger PJ, Sweatt JD (2000) The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. Journal of Neurochemistry 75: 2277–2287CrossRefGoogle Scholar
  23. 23.
    Martin VT (2009) Ovarian hormones and pain response: a review of clinical and basic science studies. Gend Med 6 Suppl 2: 168–192Google Scholar
  24. 24.
    Fillingim RB, Maixner W (1995) Gender differences in the responses to noxious stimuli. Pain Forum 4: 209–221CrossRefGoogle Scholar
  25. 25.
    Dib-Hajj SD, Black JA, Waxman SG (2009) Voltage-gated sodium channels: therapeutic targets for pain. Pain Med 10: 1260–1269CrossRefGoogle Scholar
  26. 26.
    Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG (2006) A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 103: 8245–8450CrossRefGoogle Scholar
  27. 27.
    Ostman JA, Nassar MA, Wood JN, Baker MD (2008) GTP upregulated persistent Na+ current and enhanced nociceptor excitability require NaV1.9. J Physiol 586: 1077–1087CrossRefGoogle Scholar
  28. 28.
    Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14: 1649–1660CrossRefGoogle Scholar
  29. 29.
    Carrer HF, Araque A, Buno W (2003) Estradiol regulates the slow Ca2+-activated K+ current in hippocampal pyramidal neurons. J Neurosci 23: 6338–6344CrossRefGoogle Scholar
  30. 30.
    Stankewitz A, Aderjan D, Eippert F, May A (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31: 1937–1943CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Wachirapong Saleeon
    • 1
  • Ukkrit Jansri
    • 2
  • Anan Srikiatkhachorn
    • 1
  • Saknan Bongsebandhu-phubhakdi
    • 2
    Email author
  1. 1.Department of Physiology, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  2. 2.Research Affairs, Faculty of MedicineChulalongkorn UniversityBangkokThailand

Personalised recommendations