Aerotecnica Missili & Spazio

, Volume 97, Issue 2, pp 103–110 | Cite as

Elastoplastic and progressive failure analysis of fiber-reinforced composites via an efficient nonlinear microscale model

  • I. Kaleel
  • M. Petrolo
  • E. Carrera


This paper presents numerical results concerning the nonlinear and failure analysis of fiber-reinforced composites. The micromechanical framework exploits a class of refined 1D models based on the Carrera Unified Formulation (CUF) having a variable kinematic description. The recently developed CUF micromechanics is a framework for the nonlinear modeling and exploits the ability of the CUF to predict accurate 3D stress fields with reduced computational overheads. The present formulation features the von Mises J2 theory for the pre-peak nonlinearity observed in matrix constituents, and the crack-band theory to capture the damage progression. Numerical examples and comparisons with results from literature assess the accuracy and efficiency of the proposed framework. The paper highlights the applicability of CUF models as an efficient micromechanical platform for nonlinear and progressive failure analysis for fiber-reinforced composites with potentially major advantages in the perspective of multiscale modeling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Liu, D. Furrer, J. Kosters, and J. Holmes. Vision 2040: A roadmap for integrated, multiscale modeling and simulation of materials and systems. NASA Glenn Research Center, 2018.Google Scholar
  2. 2.
    J. Llorca, C. González, J. M. Molina-Aldareguía, J. Segurado, R. Seltzer, F. Sket, M. Rodríguez, S. Sádaba, R. Muñoz, and L. P. Canal. Multi-scale modeling of composite materials: A roadmap towards virtual testing. Advanced Materials, 23(44):5130–5147, 2011.CrossRefGoogle Scholar
  3. 3.
    DIGIMAT Software. e-Xstream Engineering. Louvain-la-Neuve, Belgium, 2018.Google Scholar
  4. 4.
    B. A. Bednarcyk, J. Aboudi, and S. M. Arnold. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents. AIAA Journal, 48(7):1367–1378, 2010.CrossRefGoogle Scholar
  5. 5.
    E. J. Pineda, B. A. Bednarcyk, A. M. Waas, and S. M. Arnold. Progressive failure of a unidirectional fiber-reinforced composite using the method of cells: Discretization objective computational results. International Journal of Solids and Structures, 50(9):1203–1216, 2013.CrossRefGoogle Scholar
  6. 6.
    D. Zhang, A.M. Waas, and C.F. Yen. Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part II: Mechanics based multiscale computational modeling of progressive damage and failure. International Journal of Solids and Structures, 75-76:321–335, 2015.CrossRefGoogle Scholar
  7. 7.
    C. C. Chamis, F. Abdi, M. Garg, L. Minnetyan, H. Baid, D. Huang, J. Housner, and F. Talagani. Micromechanics-based progressive failure analysis prediction for WWFE-III composite coupon test cases. Journal of Composite Materials, 47(20-21):2695–2712, 2013.CrossRefGoogle Scholar
  8. 8.
    P. Davidson and A.M. Waas. Mechanics of kinking in fiber-reinforced composites under compressive loading. Mathematics and Mechanics of Solids, 21(6):667–684, 2016.MathSciNetCrossRefGoogle Scholar
  9. 9.
    W. Yu. A unified theory for constitutive modeling of composites. Journal of Mechanics of Materials and Structures, 11(4):379–411, 2016.MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Carrera, M. Cinefra, E. Zappino, and M. Petrolo. Finite Element Analysis of Structures Through Unified Formulation. 2014.CrossRefGoogle Scholar
  11. 11.
    E. Carrera, D. Guarnera, and A. Pagani. Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models. Biomechanics and Modeling in Mechanobiology, 17(2):301–317, Apr 2018.CrossRefGoogle Scholar
  12. 12.
    I Kaleel, M Petrolo, A M Waas, and E Carrera. Micromechanical Progressive Failure Analysis of Fiber- Reinforced Composite Using Refined Beam Models. Journal of Applied Mechanics, 85(February), 2018.CrossRefGoogle Scholar
  13. 13.
    M. Cinefra, M. Petrolo, G. Li, and E. Carrera. Variable kinematic shell elements for composite laminates accounting for hygrothermal effects. Journal of Thermal Stresses, 40(12):1523–1544, 2017.CrossRefGoogle Scholar
  14. 14.
    A. Pagani and E. Carrera. Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation. Composite Structures, 170:40–52, 2017.CrossRefGoogle Scholar
  15. 15.
    A.G. de Miguel, G. De Pietro, E. Carrera, G. Giunta, and A. Pagani. Locking-free curved elements with refined kinematics for the analysis of composite structures. Computer Methods in Applied Mechanics and Engineering, 337:481–500, 2018.MathSciNetCrossRefGoogle Scholar
  16. 16.
    I. Kaleel, Petrolo, A.M. Waas, and E. Carrera. Computationally efficient, high-fidelity microme-chanics framework using refined 1d models. Composite Structures, 181, 2017.CrossRefGoogle Scholar
  17. 17.
    von Mises R. Mechanics of solid bodies in the plastically-deformable state. Mechanik der festen K örper in plastisch-deformablen Zustand, 4:582–592, 1913.Google Scholar
  18. 18.
    Z. Bazant and B. H. Oh. Crack band theory of concrete. Materials and Structures, 16:155–177, 1983.Google Scholar
  19. 19.
    E. Carrera and G. Giunta. Refined Beam Theories Based on a Unified Formulation. International Journal of Applied Mechanics, 02(01):117–143, 2010.CrossRefGoogle Scholar
  20. 20.
    E. Carrera and M. Petrolo. Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 47(3):537–556, 2012.MathSciNetCrossRefGoogle Scholar
  21. 21.
    A Pagani, A. G. De Miguel, M. Petrolo, and E. Carrera. Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions. Composite Structure, 156(15), 2016.Google Scholar
  22. 22.
    E. Carrera, I. Kaleel, and M. Petrolo. Elasto-plastic analysis of compact and thin-walled structures using classical and refined beam finite element models. Mechanics of Advanced Materials and Structures, In Press.Google Scholar
  23. 23.
    C.T. Sun and Yoon K.J. Elastic-plastic analysis of as4/peek composite laminate using a one-parameter plasticity model. Journal of Composite Materials, 26(2):293–308, 1992.CrossRefGoogle Scholar
  24. 24.
    M. Vogler, R. Rolfes, and P. P. Camanho. Mechanics of Materials Modeling the inelastic deformation and fracture of polymer composites -Part I: Plasticity model. Mechanics of Materials, 59:50–64, 2013.CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, C. Hou, W. Wang, M. Zhao, and X. Wan. A phenomenological intra-laminar plasticity model for frp composite materials. IOP Conference Series: Materials Science and Engineering, 87(1), 2015.Google Scholar
  26. 26.
    P D Soden, M J Hinton, and a S Kaddour. Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: Failure exercise benchmark data. Composites Science and Technology, 62:52–96, 2002.CrossRefGoogle Scholar
  27. 27.
    O’Higgins R. M. An experimental and numerical study of damage initiation and growth in high strength glass and carbon fiber-reinforced composite materials. PhD thesis, University of Limerick, 2007.Google Scholar
  28. 28.
    A. Kaddour, M. Hinton, P. Smith, and S. Li. A comparison between the predictive capability of matrix cracking, damage and failure criteria for fibre reinforced composite laminates: Part A of the third world-wide failure exercise. Journal of Composite Materials, 47(20-21):2749–2779, 2013.CrossRefGoogle Scholar
  29. 29.
    C. T. McCarthy, R. M. O’Higgins, and R. M. Frizzell. A cubic spline implementation of nonlinear shear behaviour in three-dimensional progressive damage models for composite laminates. Composite Structures, 92(1):173–181, 2010.CrossRefGoogle Scholar
  30. 30.
    E.K Gamstedt and Sjögren. Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies. Composites Science and Technology, 59(2):167–178, 1999.CrossRefGoogle Scholar
  31. 31.
    E. Pineda, B. Bednarcyk, A. M. Waas, and S. Arnold. Progressive Failure of a Unidirectional Fiber-reinforced Composite Using the Method of Cells: Discretization Objective Computational Results. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference, (April):1–46, 2012.Google Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2018

Authors and Affiliations

  • I. Kaleel
    • 1
  • M. Petrolo
    • 1
  • E. Carrera
    • 1
  1. 1.Department of Mechanical and Aerospace Engineering, Politecnico di TorinoMUL2 GroupItaly

Personalised recommendations