Advertisement

Aerotecnica Missili & Spazio

, Volume 97, Issue 2, pp 96–102 | Cite as

Numerical study of 3D gaseous detonations in a square channel

  • S. Taileb
  • M. Reynaud
  • A. Chinnayya
  • F. Virot
  • P. Bauer
Article
  • 3 Downloads

Abstract

The multidimensional structure of mildly unstable detonations are examined by numerical computations. These phenomenon have grown in interest since the development of propulsion devices such as pulsed and rotating detonation engines. Rectangular, diagonal and spinning modes are observed in a near-limit propagation detonation. High-order numerical integration of the reactive Euler equations have been performed to analyze the averaged structure, the shock dynamics of a single-cell detonation propagating in a square channel. Computations show a good agreement with the experimental cellular structure, showing the relevance of the slapping waves in the rectangular modes. The hydrodynamic thickness as well as the pdf shock dynamics are similar in the 2D and 3D cases, but the mean quantities vary on a quantitative basis. Moreover, the presence of strong forward jets is attested, which comes from simultaneous triple point line collisions with the walls.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Williams, L. Bauwens, E. S. Oran, Detailed structure and propagation of three-dimensional detonations, in: Symposium (International) on Combustion, Vol. 26, Elsevier, 1996, pp. 2991–2998.Google Scholar
  2. 2.
    M. Hanana, M. Lefebvre, Pressure profiles in detonation cells with rectangular and diagonal structures, Shock Waves 11 (2) (2001) 77–88.CrossRefGoogle Scholar
  3. 3.
    N. Tsuboi, S. Katoh, A. K. Hayashi, Threedimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures, Proceedings of the Combustion Institute 29 (2) (2002) 2783–2788.CrossRefGoogle Scholar
  4. 4.
    R. Deiterding, Numerical structure analysis of regular hydrogen-oxygen detonations, in: WSSCI Fall 2003 Meeting, University of California, Los Angeles, 2003.Google Scholar
  5. 5.
    K. Eto, N. Tsuboi, A. K. Hayashi, Numerical study on three-dimensional cj detonation waves: detailed propagating mechanism and existence of OH radical, Proceedings of the Combustion Institute 30 (2) (2005) 1907–1913.CrossRefGoogle Scholar
  6. 6.
    V. Deledicque, M. V. Papalexandris, Computational study of three-dimensional gaseous detonation structures, Combustion and flame 144 (4) (2006) 821–837.CrossRefGoogle Scholar
  7. 7.
    H.-S. Dou, H. M. Tsai, B. C. Khoo, J. Qiu, Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme, Combustion and Flame 154 (4) (2008) 644–659.CrossRefGoogle Scholar
  8. 8.
    H. S. Dou, B. C. Khoo, Effect of initial disturbance on the detonation front structure of a narrow duct, Shock Waves 20 (2) (2010) 163–173. doi:10.1007/s00193-009-0240-8.CrossRefGoogle Scholar
  9. 9.
    N. Tsuboi, A. K. Hayashi, Numerical study on spinning detonations, Proceedings of the Combustion Institute 31 (2) (2007) 2389–2396.CrossRefGoogle Scholar
  10. 10.
    C. Wang, C.-W. Shu, W. Han, J. Ning, High resolution WENO simulation of 3D detonation waves, Combustion and Flame 160 (2) (2013) 447–462.CrossRefGoogle Scholar
  11. 11.
    Y. Huang, H. Ji, F. Lien, H. Tang, Numerical study of three-dimensional detonation structure transformations in a narrow square tube: from rectangular and diagonal modes into spinning modes, Shock Waves 24 (4) (2014) 375–392.CrossRefGoogle Scholar
  12. 12.
    M. Reynaud, F. Virot, A. Chinnayya, A computational study of the interaction of gaseous detonations with a compressible layer, Physics of Fluids 29 (5) (2017) 056101.Google Scholar
  13. 13.
    A. Suresh, H. T. Huynh, Accurate monotonicitypreserving schemes with runge-kutta time stepping, Journal of Computational Physics 136 (1) (1997) 83–99.MathSciNetCrossRefGoogle Scholar
  14. 14.
    E. F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-riemann solver, Shock Waves 4 (1) (1994) 25–34.CrossRefGoogle Scholar
  15. 15.
    A. Sow, Modélisation numérique des détonations gazeuses en milieu confiné, Ph.D. thesis, University of Rouen, France (2014).Google Scholar
  16. 16.
    O. Heuzé, P. Bauer, H. Presles, C. Brochet, Equations of state for detonation products and their incorporation into the quatuor code, in: 8th Symp.(Int.) on Detonation, 1986, pp. 762–769.Google Scholar
  17. 17.
    J. H. Lee, The detonation phenomenon, Cambridge University Press Cambridge, 2008.CrossRefGoogle Scholar
  18. 18.
    J. M. Austin, The role of instability in gaseous detonation, Ph.D. thesis, California Institute of Technology (2003).Google Scholar
  19. 19.
    M. I. Radulescu, G. J. Sharpe, C. K. Law, J. H. S. Lee, The hydrodynamic structure of unstable cellular detonations, Journal of Fluid Mechanics 580 (2007) 31–81.MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Hanana, M. H. Lefebvre, P. J. V. Tiggelen, Pressure profiles in detonation cells with rectangular and diagonal structures, Shock Waves 11 (2001) 77–88.CrossRefGoogle Scholar
  21. 21.
    A. Sow, A. Chinnayya, A. Hadjadj, Mean structure of one-dimensional unstable detonations with friction, Journal of Fluid Mechanics 743 (2014) 503–533.MathSciNetCrossRefGoogle Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2018

Authors and Affiliations

  • S. Taileb
  • M. Reynaud
  • A. Chinnayya
  • F. Virot
  • P. Bauer
    • 1
  1. 1.Institut PprimeUPR 3346 CNRS-ENSMA-University of PoitiersFuturuscope CedexFrance

Personalised recommendations