Advertisement

Canadian Journal of Public Health

, Volume 97, Issue 2, pp 126–131 | Cite as

Impact of Antibiotic Administrative Restrictions on Trends in Antibiotic Resistance

  • D. A. MarshallEmail author
  • A. McGeer
  • J. Gough
  • P. Grootendorst
  • M. Buitendyk
  • S. Simonyi
  • K. Green
  • B. Jaszewski
  • S. M. MacLeod
  • D. E. Low
Research

Abstract

Context

In March 2001, in response to concerns about increasing resistance to fluoroquinolone (FQ) antibiotics, the Ontario Drug Benefit (ODB) program limited reimbursement of FQs to ODB beneficiaries defined as high risk or in whom other therapies are not tolerated.

Objective

To analyze the impact of the limited use (LU) policy changes on antibiotic resistance rates in Ontario, focussing on community-acquired pathogens.

Design

Ontario data submitted to the Canadian Bacterial Surveillance Network (CBSN) between January 1, 1998 and June 30, 2002 were analyzed for rates of resistance in various pathogen-antibiotic combinations. The effect of the LU policy on the level and rate of change of antibiotic resistance was estimated using time series models.

Results

Resistance rates for S. pneumoniae were 10-12% for penicillin, erythromycin and trimethoprim sulfamethoxazole (TMP/SMX) and less than 3% for amoxicillin and all three FQs tested. There was a statistically significant increasing trend in resistance rates of S. pneumoniae to amoxicillin and levofloxacin throughout the study period. Antibiotic resistance of S. pneumoniae to ciprofloxacin indicated a statistically significant decreasing trend over the study period with a statistically significant increase in the level of antibiotic resistance at the time of the LU policy implementation. No other indication of any statistically significant decrease in resistance rates associated with the LU policy was found.

Conclusions

Although no direct cause and effect can be proven with these observational data, there is no evidence that the limited use policy to restrict fluoroquinolones decreased antibiotic resistance in any of the pathogen-antibiotic combinations tested.

MeSH terms

Anti-bacterial agents health policy statistical models reimbursement mechanisms antibiotic resistance drug resistance 

Résumé

Contexte

En mars 2001, en réponse aux préoccupations soulevées par la résistance accrue aux fluoroquinolones (FQ), le Programme de médicaments de l’Ontario limitait le remboursement de ces antibiotiques aux seuls bénéficiaires qui présentent un risque élevé ou qui ne tolèrent pas d’autres thérapies.

Objectif

Analyser l’impact du changement d’orientation en faveur de l’usage limité (UL) sur les taux d’antibiorésistance en Ontario, en mettant l’accent sur les agents pathogènes acquis dans la communauté.

Conception

Nous avons analysé les données ontariennes introduites dans le Réseau canadien de surveillance des bactéries (RCSB) entre le 1er janvier 1998 et le 30 juin 2002 pour obtenir les taux de résistance de diverses combinaisons d’agents pathogènes et d’antibiotiques. Nous avons évalué l’effet de la politique d’UL sur les niveaux et sur le taux de changement de l’antibiorésistance à l’aide de modèles en séries chronologiques.

Résultats

Les taux de résistance à S. pneumoniae variaient entre 10 % et 12 % pour la pénicilline, l’érythromycine et le triméthoprime-sulfaméthoxazole (TMP/SMX) et se situaient à moins de 3 % pour l’amoxicilline et les trois FQ testées. Nous avons observé une tendance à la hausse statistiquement significative dans les taux de résistance de S. pneumoniae à l’amoxicilline et à la lévofloxacine pendant toute la période d’étude. L’antibiorésistance de S. pneumoniae à la ciprofloxacine présentait une tendance à la baisse statistiquement significative sur la période d’étude, ainsi qu’une hausse significative du niveau d’antibiorésistance lors de la mise en oeuvre de la politique d’UL. Aucune autre indication d’une baisse significative des taux de résistance associés à la politique d’UL n’a été relevée.

Conclusions

Ces données d’observation ne permettent pas de prouver l’existence d’un lien causal direct, mais rien n’indique que la politique d’usage limité des FQ a diminué l’antibiorésistance dans les combinaisons d’agents pathogènes et d’antibiotiques testées.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Low, DE. Appropriate antibiotic use: Reducing the emergence and dissemination of resistance. Int J Clin Pract 2000;115Suppl:106–10.Google Scholar
  2. 2.
    Controlling antimicrobial resistance. An integrated action plan for Canadians. Can Commun Dis Rep 1997;23(Suppl 7):i–32, i.Google Scholar
  3. 3.
    Health Canada. https://doi.org/www.hc-sc.gc.ca/english/antires/htm. 2003.
  4. 4.
    Chen DK, McGeer A, de Azavedo JC, Low, DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Canadian Bacterial Surveillance Network. N Engl J Med 1999;341(4):233–39.CrossRefGoogle Scholar
  5. 5.
    Low DE, de Azavedo J, Weiss K, Mazzulli T, Kuhn M, Church D, et al. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in Canada during 2000. Antimicrob Agents Chemother 2002;46(5):1295–301.CrossRefGoogle Scholar
  6. 6.
    Doern GV, Pfaller MA, Erwin ME, Brueggemann AB, Jones, RN. The prevalence of fluoroquinolone resistance among clinically significant respiratory tract isolates of Streptococcus pneumoniae in the United States and Canada—1997 results from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis 1998;32(4):313–16.CrossRefGoogle Scholar
  7. 7.
    Grossman, RF. The role of fluoroquinolones in respiratory tract infections. J Antimicrob Chemother 1997;40(Suppl A):59–62.CrossRefGoogle Scholar
  8. 8.
    Low, DE. Antimicrobial drug use and resistance among respiratory pathogens in the community. Clin Infect Dis 2001;33(Suppl 3):S206–S213.CrossRefGoogle Scholar
  9. 9.
    Gould, IM. A review of the role of antibiotic policies in the control of antibiotic resistance. J Antimicrob Chemother 1999;43(4):459–65.CrossRefGoogle Scholar
  10. 10.
    Westh H, Jarlov JO, Kjersem H, Rosdahl, VT. The disappearance of multiresistant Staphylococcus aureus in Denmark: Changes in strains of the 83A complex between 1969 and 1989. Clin Infect Dis 1992;14(6):1186–94.CrossRefGoogle Scholar
  11. 11.
    Seppala H, Klaukka T, Vuopio-Varkila J, Muotiala A, Helenius H, Lager K, et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N Engl J Med 1997;337(7):441–46.CrossRefGoogle Scholar
  12. 12.
    Beilby J, Marley J, Walker D, Chamberlain N, Burke M. Effect of changes in antibiotic prescribing on patient outcomes in a community setting: A natural experiment in Australia. Clin Infect Dis 2002;34(1):55–64.CrossRefGoogle Scholar
  13. 13.
    Zhanel GG, Palatnick L, Nichol KA, Bellyou T, Low DE, Hoban, DJ. Antimicrobial resistance in respiratory tract Streptococcus pneumoniae isolates: Results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002. Antimicrob Agents Chemother 2003;47(6):1867–74.CrossRefGoogle Scholar
  14. 14.
    Antibiotic Resistance: Antibiotic review and Ontario Drug Benefit Formulary listing changes. DQTC Bulletin 2001; February.Google Scholar
  15. 15.
    National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing. Tenth Informational Supplement. Tenth Informational Supplement M100-S12 NCCCLS 2002; Wayne, PA, USA.Google Scholar
  16. 16.
    Brocklebank JC, Dickey, DA. SAS System for Forecasting Time Series. Cary, NC: SAS Institute, 1986.Google Scholar
  17. 17.
    Greenland S, Rothman, KJ. Introduction to categorical statistics. In: Rothman KJ, Greenland S (Eds.), Modern Epidemiology. Philadelphia, PA: Lippincott-Raven, 1998;231–52.Google Scholar
  18. 18.
    Greenland S, Rothman, KJ. Fundamentals of epidemiologic data analysis. In: Rothman KJ, Greenland S (Eds.), Modern Epidemiology. Philadelphia: Lippincott William & Wilkins, 1998;201–29.Google Scholar
  19. 19.
    Burke, JP. Antibiotic resistance—squeezing the balloon? JAMA 1998;280(14):1270–71.CrossRefGoogle Scholar
  20. 20.
    Rahal JJ, Urban C, Horn D, Freeman K, Segal-Maurer J, Maurer J, et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 1998;280(14):1233–37.CrossRefGoogle Scholar
  21. 21.
    Marshall DA, Gough J, Grootendorst P, Buitendyk M, Jaszewski B, Simonyi S, et al. Impact of administrative restrictions on antibiotic use and expenditures in Ontario: Time series analysis. J Health Services Policy and Research 2006;11(1):13–20.CrossRefGoogle Scholar
  22. 22.
    Seppala H, Nissinen A, Jarvinen H, Huovinen S, Henriksson T, Herva E, et al. Resistance to erythromycin in group A streptococci. N Engl J Med 1992;326(5):292–97.CrossRefGoogle Scholar
  23. 23.
    Baquero F. Evolving resistance patterns of Streptococcus pneumoniae: A link with longacting macrolide consumption? J Chemother 1999;11(Suppl 1):35–43.Google Scholar
  24. 24.
    Pihlajamaki M, Kotilainen P, Kaurila T, Klaukka T, Palva E, Huovinen P. Macrolide-resistant Streptococcus pneumoniae and use of antimicrobial agents. Clin Infect Dis 2001;33(4):483–88.CrossRefGoogle Scholar
  25. 25.
    Pelton SI, Klein, JO. The future of pneumococcal conjugate vaccines for prevention of pneumococcal diseases in infants and children. Pediatrics 2002;110(4):805–14.CrossRefGoogle Scholar
  26. 26.
    Janior C, Zeller V, Kitzis MD, Moreau NJ, Gutmann L. High-level fluoroquinolone resistance in Steptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother 1996;40(12):2760–64.CrossRefGoogle Scholar
  27. 27.
    Bartlett JG, Dowell SF, Mandell LA, File Jr TM, Musher DM, Fine, MJ. Practice guidelines for the management of community-acquired pneumonia in adults. Infectious Diseases Society of America. Clin Infect Dis 2000;31(2):347–82.CrossRefGoogle Scholar
  28. 28.
    Mandell LA, Marrie TJ, Grossman RF, Chow AW, Hyland, RH. Summary of Canadian guidelines for the initial management of communityacquired pneumonia: An evidence-based update by the Canadian Infectious Disease Society and the Canadian Thoracic Society. Can Respir J 2000;7(5):371–82.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2006

Authors and Affiliations

  • D. A. Marshall
    • 1
    Email author
  • A. McGeer
    • 2
  • J. Gough
    • 3
  • P. Grootendorst
    • 4
  • M. Buitendyk
    • 3
  • S. Simonyi
    • 1
  • K. Green
    • 2
  • B. Jaszewski
    • 5
  • S. M. MacLeod
    • 1
    • 6
  • D. E. Low
    • 2
  1. 1.Health Economics and Outcomes ResearchInnovus Research Inc.BurlingtonCanada
  2. 2.Toronto Medical Laboratories and Mount Sinai Hospital, Department of MicrobiologyUniversity of TorontoCanada
  3. 3.Biostatistics, Innovus Research Inc.BurlingtonCanada
  4. 4.Faculty of PharmacyUniversity of TorontoCanada
  5. 5.Health Economics and Outcomes ResearchBayer HealthCare Inc.TorontoCanada
  6. 6.British Columbia Research Institute for Children’s & Women’s HealthVancouverCanada

Personalised recommendations