Canadian Journal of Public Health

, Volume 96, Supplement 1, pp S45–S50 | Cite as

Demographic Risk Factors for Fracture in First Nations People

  • William D. LeslieEmail author
  • Shelley A. Derksen
  • Colleen Metge
  • Lisa M. Lix
  • Elizabeth A. Salamon
  • Pauline Wood Steiman
  • Leslie L. Roos



Recently, First Nations people were shown to be at high fracture risk compared with the general population. However, factors contributing to this risk have not been examined. This analysis focusses on geographic area of residence, income level, and diabetes mellitus as possible explanatory variables since they have been implicated in the fracture rates observed in other populations.


A retrospective, population-based matched cohort study of fracture rates was performed using the Manitoba administrative health data (1987-1999). The First Nations cohort included all Registered First Nations adults (20 years or older) as indicated in either federal and/or provincial files (n=32,692). Controls (up to three for each First Nations subject) were matched by year of birth, sex and geographic area of residence. After exclusion of unmatched subjects, analysis was based upon 31,557 First Nations subjects and 79,720 controls.


Overall and site-specific fracture rates were significantly higher in the First Nations cohort. Income quintile, geographic area of residence, and diabetes were fracture determinants but the excess fracture risk of First Nations ethnicity persisted even after adjustment for these factors.


First Nations people are at high risk for fracture but the causal factors contributing to this are unclear. Further research is needed to evaluate the importance of other potential explanatory variables.

MeSH terms

Ethnic group fractures Indians North American medical records systems, computerized osteoporosis 



On a récemment démontré que le risque de fracture était plus élevé chez les membres des Premières nations que dans la population générale. Cependant, les facteurs pouvant contribuer à ce risque n’ont pas été examinés. La présente étude porte sur la région de résidence, le niveau de revenu et le diabète sucré, qui pourraient être des variables explicatives, car elles jouent un rôle dans les taux de fracture observés dans d’autres populations.


À l’aide des données administratives sur la santé du Manitoba (1987-1999), nous avons mené une étude de cohortes représentative et rétrospective portant sur les taux de fracture. La cohorte des Premières nations comprenait tous les membres des Premières nations d’âge adulte (20 ans et plus) désignés comme étant „ inscrits ” dans les bases de données fédérales et/ou provinciales (n = 32 692). Les témoins (jusqu’à trois pour chaque sujet des Premières nations) ont été assortis aux cas selon l’année de naissance, le sexe et la région de résidence. Après avoir exclu les cas non assortis, notre analyse s’est fondée sur 31 557 sujets des Premières nations et 79 720 témoins.


Les taux de fracture globaux et par site étaient sensiblement plus élevés dans la cohorte des Premières nations. Le quintile de revenu, la région de résidence et le diabète étaient des déterminants du taux de fracture, mais il subsiste un risque de fracture plus élevé chez les membres des Premières nations, même après ajustement selon ces trois facteurs.


Les membres des Premières nations présentent un risque de fracture élevé, mais les facteurs causals de cette situation ne sont pas clairs. Il faudrait pousser la recherche pour évaluer l’importance d’autres variables explicatives possibles.


  1. 1.
    Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: An observational study. Lancet 1999;353(9156):878–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Forsen L, Sogaard AJ, Meyer HE, Edna T, Kopjar B. Survival after hip fracture: Short- and long-term excess mortality according to age and gender. Osteoporos Int 1999;10(1):73–78.PubMedCrossRefGoogle Scholar
  3. 3.
    Meyer HE, Tverdal A, Falch JA, Pedersen JI. Factors associated with mortality after hip fracture. Osteoporos Int 2000;11(3):228–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Wiktorowicz ME, Goeree R, Papaioannou A, Adachi JD, Papadimitropoulos E. Economic implications of hip fracture: Health service use, institutional care and cost in Canada. Osteoporos Int 2001;12(4):271–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Papadimitropoulos EA, Coyte PC, Josse RG, Greenwood CE. Current and projected rates of hip fracture in Canada. CMAJ 1997;157(10):1357–63.PubMedPubMedCentralGoogle Scholar
  6. 6.
    van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone 2001;29(6):517–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Grisso JA, Kelsey JL, Strom BL, O’Brien LA, Maislin G, LaPann K, et al. Risk factors for hip fracture in black women. The Northeast Hip Fracture Study Group. N Engl J Med 1994;330(22):1555–59.PubMedCrossRefGoogle Scholar
  8. 8.
    Calder SJ, Anderson GH, Harper WM, Gregg PJ. Ethnic variation in epidemiology and rehabilitation of hip fracture. BMJ 1994; 309(6962):1124–25.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 1998;8(5):468–89.PubMedCrossRefGoogle Scholar
  10. 10.
    MacMillan HL, MacMillan AB, Offord DR, Dingle JL. Aboriginal health. CMAJ 1996;155(11):1569–78.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Leslie WD, Derksen S, Metge C, Lix L, Salamon EA, Wood Steiman P, Roos LL. Fracture risk among First Nations people: A retrospective matched cohort study. CMAJ 2004;171(8):869–73.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Farahmand BY, Persson PG, Michaelsson K, Baron JA, Parker MG, Ljunghall S. Socioeconomic status, marital status and hip fracture risk: A population-based case-control study. Osteoporos Int 2000;11(9):803–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Varenna M, Binelli L, Zucchi F, Ghiringhelli D, Gallazzi M, Sinigaglia L. Prevalence of osteoporosis by educational level in a cohort of post-menopausal women. Osteoporos Int 1999;9(3):236–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Bacon WE, Hadden WC. Occurrence of hip fractures and socioeconomic position. J Aging Health 2000;12(2):193–203.PubMedCrossRefGoogle Scholar
  15. 15.
    Kaastad TS, Meyer HE, Falch JA. Incidence of hip fracture in Oslo, Norway: Differences within the city. Bone 1998;22(2):175–78.PubMedCrossRefGoogle Scholar
  16. 16.
    Sernbo I, Johnell O, Andersson T. Differences in the incidence of hip fracture. Comparison of an urban and a rural population in southern Sweden. Acta Orthop Scand 1988;59(4):382–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnell J, Oden A, Rosengren B, Mellstrom D, Kanis J. National variation in hip fracture rate in Sweden depends on latitude and season - A cohort study of 26 million observation years. Osteoporosis Int 2002;13(Suppl. 1):S8.Google Scholar
  18. 18.
    Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: A prospective study. J Clin Endocrinol Metab 2001;86(1):32–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Forsen L, Meyer HE, Midthjell K, Edna TH. Diabetes mellitus and the incidence of hip fracture: Results from the Nord-Trondelag Health Survey. Diabetologia 1999;42(8):920–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Martens PJ, Bond R, Jebamani LS, Burchill CA, Roos NP, Derksen SA, et al. The Health and Health Care Use of Registered First Nations People Living in Manitoba: A Population-Based Study. Winnipeg: Manitoba Centre for Health Policy, 2002.Google Scholar
  21. 21.
    Jebamani L, Burchill C, Martens P. Using data linkage to identify First Nations Manitobans: Technical, ethical and political issues. Can J Public Health 2005;96(Suppl. 1):S28–S32.PubMedGoogle Scholar
  22. 22.
    Roos NP, Shapiro E. Revisiting the Manitoba Centre for Health Policy and Evaluation and its population-based health information system. Med Care 1999;37(Suppl. 6):JS10–JS14.PubMedGoogle Scholar
  23. 23.
    Roos LL, Sharp SM, Wajda A. Assessing data quality: A computerized approach. Soc Sci Med 1989;28(2):175–82.CrossRefGoogle Scholar
  24. 24.
    Roos LL, Walld RK, Romano PS, Roberecki S. Short-term mortality after repair of hip fracture. Do Manitoba elderly do worse? Med Care 1996;34(4):310–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, et al. BMD at multiple sites and risk of fracture of multiple types: Long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 2003;18(11):1947–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Income Quintiles Based on the 1996 Census. Winnipeg, MB. Manitoba Centre for Health Policy, 2003. Available on-line at (Accessed September 3, 2003)Google Scholar
  27. 27.
    Blanchard JF, Ludwig S, Wajda A, Dean H, Anderson K, Kendall O, Depew N. Incidence and prevalence of diabetes in Manitoba, 1986–1991. Diabetes Care 1996;19(8):807–11.PubMedCrossRefGoogle Scholar
  28. 28.
    McCulloch CE, Searle SR. Generalized, Linear, and Mixed Models. New York: John Wiley & Sons, 2001.Google Scholar
  29. 29.
    Fox J. Applied Regression Analysis, Linear Models, and Related Methods. Thousand Oaks, CA: Sage, 1997.Google Scholar
  30. 30.
    Spindler A, Lucero E, Berman A, Paz S, Vega E, Mautalen C. Bone mineral density in a native population of Argentina with low calcium intake. J Rheumatol 1995;22(11):2148–51.PubMedGoogle Scholar
  31. 31.
    Beyene Y, Martin MC. Menopausal experiences and bone density of Mayan women in Yucatan, Mexico. Am J Human Biol 2001;13(4):505–11.CrossRefGoogle Scholar
  32. 32.
    Hamman RF, Bennett PH, Miller M. The effect of menopause on serum cholesterol in American (Pima) Indian women. Am J Epidemiol 1975;102(2):164–69.PubMedCrossRefGoogle Scholar
  33. 33.
    Perry HM, III, Bernard M, Horowitz M, Miller DK, Fleming S, Baker MZ, et al. The effect of aging on bone mineral metabolism and bone mass in Native American women. J Am Geriatr Soc 1998;46(11):1418–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen Z, Maricic MJ, Going SB, Lohman TG, Altimari BR, Bassford TL. Comparative findings in bone mineral density among postmenopausal Native American women and postmenopausal White women residing in Arizona. Bone 2003;23(Suppl. 1):S592.Google Scholar
  35. 35.
    van Daele PL, Stolk RP, Burger H, Algra D, Grobbee DE, Hofman A, et al. Bone density in non-insulin-dependent diabetes mellitus. The Rotterdam Study. Ann Intern Med 1995;122(6):409–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Stolk RP, van Daele PL, Pols HA, Burger H, Hofman A, Birkenhager JC, et al. Hyperinsulinemia and bone mineral density in an elderly population: The Rotterdam Study. Bone 1996;18(6):545–49.PubMedCrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2005

Authors and Affiliations

  • William D. Leslie
    • 1
    Email author
  • Shelley A. Derksen
    • 2
  • Colleen Metge
    • 2
  • Lisa M. Lix
    • 2
  • Elizabeth A. Salamon
    • 1
  • Pauline Wood Steiman
    • 3
  • Leslie L. Roos
    • 2
  1. 1.Department of MedicineUniversity of ManitobaWinnipegCanada
  2. 2.Manitoba Centre for Health Policy, Department of Community Health SciencesUniversity of ManitobaWinnipegCanada
  3. 3.Assembly of Manitoba Chiefs’ Health Information and Research CommitteeCanada

Personalised recommendations