Advertisement

Canadian Journal of Public Health

, Volume 99, Issue 5, pp 428–433 | Cite as

Long-term Effects of Folic Acid Fortification and B-vitamin Supplementation on Total Folate, Homocysteine, Methylmalonic Acid and Cobalamin in Older Adults

  • Angeles A. GarciaEmail author
  • Andrew G. Day
  • Katherine Zanibbi
  • Maria Victoria Zunzunegui
Article
  • 1 Downloads

Abstract

Objective

To investigate the long-term effects of the Canadian folic acid fortification program in older adults’ whole blood cell folate (folate) and cobalamin (Cbl) status, including homocysteine (tHcy) and methylmalonic acid (MMA), with and without voluntary B-vitamin intake, from 1997 to 2004.

Methods

Cohort of community-dwelling volunteer older adults. Clinical and biochemical data, including intake of B-vitamin supplements, were obtained at 2- to 2.5-year intervals and divided in 4 periods. Random coefficients (mixed effects) models were used to estimate the linear trend in folate and to compare levels of biochemical parameters between periods. All models were estimated by restricted maximum likelihood as implemented in PROC MIXED of SAS V8.2.

Results

Folate levels increased continuously at a yearly rate of 234 ng/mL (95% CI 213-254; p<0.001) and had not plateaued by the last period when 84% of subjects without B-vitamins had elevated folate. Homocysteine did not remain suppressed. Elevated tHcy was as prevalent in the last study period as in the first. No significant deficits of Cbl or increases of MMA were observed, but MMA levels tended to increase with time in subjects without B-vitamins. B-vitamin supplements significantly affected all results, reducing tHcy and MMA levels.

Conclusion

In this population, fortification with folic acid has resulted in cumulative increases of folate with no long-term reduction in tHcy or changes in Cbl or MMA. Possible deleterious effects of cumulative increases of folate, and beneficial effects of B-vitamin supplements in reducing tHcy and MMA, should be investigated.

Key words

Folate cobalamin homocysteine methylmalonic acid aged fortification 

Résumé

Objectif

Étudier les effets à long terme du programme canadien d’enrichissement en acide folique sur la concentration de folates et de cobalamine (Cbl) dans le sang total des personnes âgées, y compris l’homocystéine (tHcy) et l’acide méthylmalonique (MMA), avec et sans apport volontaire en vitamine B, entre 1997 et 2004.

Méthode

Cohorte bénévole de personnes âgées résidant dans la communauté. Les données cliniques et biochimiques, y compris les apports en vitamine B, ont été obtenues à 2 ans ou 2,5 ans d’intervalle et divisées en 4 périodes. Des modèles à coefficients aléatoires (effets mixtes) ont servi à estimer la tendance linéaire pour les folates et à comparer les niveaux des paramètres biochimiques d’une période à l’autre. Tous les modèles ont été estimés par le maximum de vraisemblance restreint tel que mis en œuvre avec PROC MIXED de SAS, version 8.2.

Résultats

Les niveaux de folates ont régulièrement augmenté de 234 ng/mL par année (IC de 95 % = 213-254; p<0,001) et ne s’étaient pas encore stabilisés durant la dernière période, où 84 % des sujets sans apport supplémentaire en vitamine B affichaient des niveaux élevés. La suppression de l’homocystéine n’a pas persisté. Une tHcy élevée était aussi courante pendant la dernière période d’étude que pendant la première. On n’a observé aucun déficit significatif en Cbl ni augmentation du MMA, mais les niveaux de MMA ont eu tendance à s’accroître avec le temps chez les sujets sans apport supplémentaire en vitamine B. Les suppléments de vitamine B ont eu un effet significatif sur tous les résultats, en réduisant les niveaux de tHcy et de MMA.

Conclusion

Dans la population à l’étude, l’enrichissement en acide folique a entraîné des augmentations cumulatives de folates sans diminution à long terme de la tHcy ni changements dans les niveaux de Cbl ou de MMA. Les effets néfastes éventuels des hausses cumulatives de folates, et les effets bénéfiques des apports supplémentaires en vitamine B pour réduire la tHcy et le MMA, méritent d’être examinés.

Mots clés

folates cobalamine homocystéine acide méthylmalonique personnes âgées enrichissement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canada Gazette Part II. SOR/98-550, 1998;132(24):3029–33.Google Scholar
  2. 2.
    Ray JG, Vermeulen MJ, Boss SC, Cole DEC. Declining rate of folate insufficiency among adults following increased folic acid food fortification in Canada. Can J Public Health 2002;93(4):249–53.PubMedGoogle Scholar
  3. 3.
    Selhub J, Jacques PF, Bostom AG, Wilson PW, Rosenberg IH. Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification. Public Health Rev 2000;28(1–4):117–45.PubMedGoogle Scholar
  4. 4.
    Choumenkovitch SF, Jacques PF, Nadeau MR, Wilson PW, Rosenberg IH, Selhub J. Folic acid fortification increases red blood cell folate concentrations in the Framingham study. J Nutr 2001;131(12):3277–80.CrossRefGoogle Scholar
  5. 5.
    Hirsch S, de la Maza P, Barrera G, Gattas V, Petermann M, Bunout D. The Chilean flour folic acid fortification program reduces serum homocysteine levels and masks vitamin-B12 deficiency in elderly people. J Nutr 2002;132(2):289–91.CrossRefGoogle Scholar
  6. 6.
    Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999;340(19): 1449–54.CrossRefGoogle Scholar
  7. 7.
    Ray JG, Cole DEC, Boss SC. An Ontario-wide study of vitamin B12, serum folate, and red cell folate levels in relation to plasma homocysteine: Is a preventable public health issue on the rise? Clin Biochem 2000;33(5):337–43.CrossRefGoogle Scholar
  8. 8.
    Jacques PF, Rosenberg IH, Rogers G, Selhub J, Bowman BA, Gunter EW, et al. Serum total homocysteine concentrations in adolescent and adult Americans: Results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr 1999;69(3):482–84.CrossRefGoogle Scholar
  9. 9.
    Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA 2002;288(16):2015–22.CrossRefGoogle Scholar
  10. 10.
    Graham IM, Daly LE, Refsum HM, Robinson K, Brattström LE, Ueland PM, et al. Plasma homocysteine as a risk factor for vascular disease. The European concerted action project. JAMA 1997;277(22):1775–81.CrossRefGoogle Scholar
  11. 11.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002;346(7):476–83.CrossRefGoogle Scholar
  12. 12.
    van Meurs JBJ, Dhonukshe-Rutten RAM, Pluijm SMF, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteo-porotic fracture. N Engl J Med 2004;350(20):2033–41.CrossRefGoogle Scholar
  13. 13.
    McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 2004;350(20):2042–49.CrossRefGoogle Scholar
  14. 14.
    Garcia A, Haron Y, Evans L, Smith MG, Freedman M, Roman GC. Metabolic markers of cobalamin deficiency and cognitive function in normal older adults. J Am Geriatr Soc 2004;52(1):66–71.CrossRefGoogle Scholar
  15. 15.
    Garcia A, Haron Y, Pulman K, Hua L, Freedman M. Increases in homocysteine are related to worsening of Stroop scores in healthy elderly persons: A prospective follow-up study. J Gerontol A: Med Sci 2004;59(12):1323–27.CrossRefGoogle Scholar
  16. 16.
    Ray JG. Folic acid fortification in Canada. Nutr Rev 2004;62(6 Pt 2):S35–39.CrossRefGoogle Scholar
  17. 17.
    Allen RH, Stabler SP, Savage DG, Lindenbaum J. Diagnosis of cobalamin deficiency I: Usefulness of serum methylmalonic acid and total homocys-teine concentrations. Am J Hematol 1990;34(2):90–98.CrossRefGoogle Scholar
  18. 18.
    Stabler SP, Lindenbaum J, Allen RH. The use of homocysteine and other metabolites in the specific diagnosis of vitamin B-12 deficiency. J Nutr 1996;126(4 Suppl):1266S–72S.CrossRefGoogle Scholar
  19. 19.
    Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979;74(368):829–36.CrossRefGoogle Scholar
  20. 20.
    SAS Institute Inc. The MIXED procedure. SAS/STAT users guide, version 8. Cary, NC: SAS Institute Inc., 1999; 2083–226.Google Scholar
  21. 21.
    Dunnett CW. New table for multiple comparisons with a control. Biometrics 1964;20(3):482–91.CrossRefGoogle Scholar
  22. 22.
    Choumenkovitch SF, Selhub J, Wilson PW, Rader JI, Rosenberg IH, Jacques PF. Folic acid intake from fortification in the United States exceeds predictions. J Nutr 2002;132(9):2792–98.CrossRefGoogle Scholar
  23. 23.
    Quinlivan EP, Gregory III JF. Effect of food fortification on folic acid intake in the United States. Am J Clin Nutr 2003;77(1):221–25.CrossRefGoogle Scholar
  24. 24.
    Sisk ER, Lockner DW, Wold R, Waters DL, Baumgartner RN. The impact of folic acid fortification of enriched grains on an elderly population: The New Mexico aging process study. J Nutr Health Aging 2004;8(3):140–43.PubMedGoogle Scholar
  25. 25.
    Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS. Folic acid for the prevention of colorectal adenomas: A randomized clinical trial. JAMA 2007;297(21):2351–59.CrossRefGoogle Scholar
  26. 26.
    Mason JB, Dickstein A, Jacques PF, Haggarty P, Selhub J, Dallal G, et al. A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: A hypothesis. Cancer Epidemiol Biomarkers Prev 2007;16(7):1325–29.CrossRefGoogle Scholar
  27. 27.
    Arabelovic S, Sam G, Dallal GE, Jacques PF, Selhub J, Rosenberg IH, et al. Preliminary evidence shows that folic acid fortification of the food supply is associated with higher methotrex-ate dosing in patients with rheumatoid arthritis. J Am Coll Nutr 2007;26(5):453–55.CrossRefGoogle Scholar
  28. 28.
    Morris MS, Jacques PF, Rosenberg IH, Selhub J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am J Clin Nutr 2007;85(1):193–200.CrossRefGoogle Scholar
  29. 29.
    Malinow MR, Duell PB, Hess DL, Anderson PH, Kruger WD, Phillipson BE, et al. Reduction of plasma homocysteine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N Engl J Med 1998;338(15):1009–15.CrossRefGoogle Scholar
  30. 30.
    Tucker KL, Olson B, Bakun P, Dallal GE, Selhub J, Rosenberg IH. Breakfast cereal fortified with folic acid, vitamin B-6, and vitamin B-12 increases vitamin concentrations and reduces homocysteine concentrations: A randomized trial. Am J Clin Nutr 2004;79(5):805–11.CrossRefGoogle Scholar
  31. 31.
    Robertson J, Iemolo F, Stabler SP, Allen RH, Spence JD. Vitamin B12, homocysteine and carotid plaque in the era of folic acid fortification of enriched cereal grain products. CMAJ 2005;172(12):1569–73.CrossRefGoogle Scholar
  32. 32.
    Ray JG, Vermeulen MJ, Langman LJ, Boss SC, Cole DEC. Persistence of vitamin B12 deficiency among elderly women after folic acid fortification. Clin Biochem 2003;36(5):387–91.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2008

Authors and Affiliations

  • Angeles A. Garcia
    • 1
    Email author
  • Andrew G. Day
    • 2
  • Katherine Zanibbi
    • 1
  • Maria Victoria Zunzunegui
    • 3
  1. 1.Department of MedicineQueen’s UniversityKingstonCanada
  2. 2.Clinical Research CentreKingston General HospitalKingstonCanada
  3. 3.Department of Social and Preventive MedicineUniversité de MontréalMontréalCanada

Personalised recommendations