Advertisement

Canadian Journal of Public Health

, Volume 93, Supplement 1, pp S57–S61 | Cite as

Sentinel Human Health Indicators: To Evaluate the Health Status of Vulnerable Communities

  • Heraline E. HicksEmail author
  • Christopher T. De Rosa
Article

Abstract

The presence of toxic substances in the Great Lakes (GL) basin continues to be a significant concern. In the United States, some 70,000 commercial and industrial compounds are now in use. More than 30,000 are produced or used in the Great Lakes ecosystem. These substances include organochlorines (e.g., polychlorinated biphenyls (PCBs), dioxins, furans, dieldrin, etc.), heavy metals such as methylmercury, and alkylated lead, and polycyclic aromatic hydrocarbons (e.g., benzo[a]pyrene). The IJC has identified 42 locations in the GL basin of the United States and Canada as Areas of Concern (AOCs) because of high concentrations of these toxic substances. In 1990 the U.S. Congress amended the Great Lakes Critical Programs Act to create The Agency for Toxic Substances and Disease Registry (ATSDR) Great Lakes Human Health Effects Research Program (GLHHERP) to begin to address these issues. This program characterizes exposures to contaminants via consumption of GL fish and investigates the potential for short- and long-term adverse health effects. This paper reviews the GLHHERP program and indicators established to monitor and address the risks posed by these substances to vulnerable populations in the Great Lakes ecosystem.

Résumé

La présence de substances toxiques dans le bassin hydrographique des Grands Lacs constitue encore une préoccupation importante. Aux États-Unis, on utilise quelque 70 000 composés chimiques à des fins commerciales et industrielles. Plus de 30 000 d’entre eux sont produits ou employés dans l’écosystème des Grands Lacs. Les composés organochlorés (p. ex. les diphényls polychlorés [BPC], les dioxines, les furannes, la dieldrine, etc.), les métaux lourds comme le méthylmercure, ainsi que l’alkylplomb et les hydrocarbures aromatiques polycycliques (p. ex. le benzo[a]pyrène) en font partie. La CMI a désigné 42 endroits dans le bassin des Grands Lacs aux États-Unis et au Canada comme secteurs préoccupants en raison de la présence de fortes concentrations de ces substances toxiques. Aux États-Unis, le Congrès a modifié en 1990 la Great Lakes Critical Programs Act en vue de créer l’Agency for Toxic Substances and Disease Registry, responsable de l’application du Great Lakes Human Health Effects Research Program (GLHHERP), et qui a commencé à régler les problèmes causés par les substances toxiques. Le GLHHERP définit les expositions aux contaminants liées à la consommation de poissons provenant des Grands Lacs et se penche sur leurs effets nocifs à court et à long terme. Les auteurs examinent le programme GLHHERP et les indicateurs retenus pour surveiller et contrer les risques que posent de telles substances pour les populations à risque de l’écosystème des Grands Lacs.

References

  1. 1.
    US Environmental Protection Agency and Government of Canada. The Great Lakes: An Environmental Atlas and Resource Book, 3rd edition. US Environmental Protection Agency, EPA 905-B-95-001, 1995.Google Scholar
  2. 2.
    Hicks HE. The Great Lakes: A historical overview. Toxicol Ind Health 1996;12:467–76.CrossRefGoogle Scholar
  3. 3.
    Colborn T, Davidson A, Green SN, Hodge RA, Jackson CI, Liroff RA. Great Lakes, Great Legacy. Washington, DC: The Conservation Foundation and the Institute for Research on Public Policy, 1990.Google Scholar
  4. 4.
    Jacobson JL, Jacobson SW. New methodologies for assessing the effects of prenatal toxic exposure on cognitive functioning in humans. In: Evans MS (Ed.). Toxic Contaminants and Ecosystem Health: A Great Lakes Focus. New York, NY: John Wiley and Sons, 1988;373–87.Google Scholar
  5. 5.
    Jacobson JL, Jacobson SW, Humphrey HEB. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr 1990;116:38–46.CrossRefGoogle Scholar
  6. 6.
    De Rosa CT, Johnson BL. Strategic elements of ATSDR’s Great Lakes Human Health Effects Research Program. Toxicol Ind Health 1996;12:315–25.CrossRefGoogle Scholar
  7. 7.
    Weisglas-Kuperus N, Sas TCJ, Koopman-Esseboom C, Van der Zwan CW, de Ridder MAJ, Beishuizen A, et al. Immunologic effects of background prenatal and postnatal exposure to dioxins and polychlorinated biphenyls in Dutch infants. Pediatric Research 1995;38(3):404–10.CrossRefGoogle Scholar
  8. 8.
    International Joint Commission. An Inventory of Chemical Substances Identified in the Great Lakes Ecosystem. Vol 1–6. Windsor, ON: International Joint Commission, 1983.Google Scholar
  9. 9.
    National Health and Welfare Canada. Toxic Chemicals in the Great Lakes and Associated Effects. Vol. 2. Environment Canada, Department of Fisheries and Oceans, 1991.Google Scholar
  10. 10.
    Birmingham B, Gilman A, Grant D, Salminen J, Boddington M, Thorpe B, et al. PCDD/PCDF multimedia exposure analysis for the Canadian population: Detailed exposure estimation. Chemosphere 1989;19(1–6):637–42.CrossRefGoogle Scholar
  11. 11.
    Humphrey HEB. Population studies of PCBs in Michigan residents. In: D’Itri FM, Kamrin MA (Eds.), PCBs: Human and Environmental Hazards, chapter 21. Ann Arbor, MI: Ann Arbor Science Press, 1983;299–310.Google Scholar
  12. 12.
    Janz NK, Becker MH. The health belief model: A decade later. Health Educ Q 1984;11(1):1–47.CrossRefGoogle Scholar
  13. 13.
    Rosenstock IM, Strecher VJ, Becker MH. Social learning theory and the health belief model. Health Educ Q 1988;15:175–83.CrossRefGoogle Scholar
  14. 14.
    Hanrahan LP, Falk C, Anderson HA, Draheim L, Kanarek MS, Olson J, et al. Serum PCB and DDE levels of frequent Great Lakes sport fish consumers - a first look. Environ Res 1999;80(Suppl 2):26–37.CrossRefGoogle Scholar
  15. 15.
    Stewart P, Darvill T, Lonky E, Reihman J, Pagano J, Bush B. Assessment of prenatal exposure of PCBs from maternal consumption of Great Lakes fish: An analysis of PCB pattern and concentration. Environ Res 1999;80(Suppl 2):87–96.CrossRefGoogle Scholar
  16. 16.
    Schantz SL, Gardiner JC, Gasior DM, Sweeney AM, Humphrey HEB, McCaffrey RJ. Motor functioning in aging Great Lakes fisheaters. Environ Res 1999;80(Suppl 2):46–56.CrossRefGoogle Scholar
  17. 17.
    Johnson BL, Hicks HE, Jones DE, Cibulas W, Wargo A, De Rosa CT. Public health implications of persistent toxic substances in the Great Lakes and St. Lawrence basins. J Great Lakes Res 1998;24(2):698–722.CrossRefGoogle Scholar
  18. 18.
    Anderson HA, Falk C, Hanrahan L, Olson J, Burse V, Needham L, et al. Profiles of Great Lakes critical pollutants: A sentinel analysis of human blood and urine -The Great Lakes Consortium. Environ Health Perspect 1998;106(5):279–89.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dellinger JA, Meyers RM, Gebhardt KJ, Hansen LK. The Ojibwa health study: Fish residue comparisons for Lakes Superior, Michigan, and Huron. Toxicol Ind Health 1996;12:393–402.CrossRefGoogle Scholar
  20. 20.
    Fitzgerald EF, Deres DA, Hwang S-A, Bush B, Yang B-Z, Tarbell A, Jacobs A. Local fish consumption and serum PCB concentrations among Mohawk men at Akwesasne. Environ Res 1999;80(Suppl 2):97–103.CrossRefGoogle Scholar
  21. 21.
    Lonky E, Reihman J, Darvill T, Mather J, Daly H. Neonatal behavioural assessment scale performance in humans influenced by maternal consumption of environmentally contaminated Lake Ontario fish. J Great Lakes Res 1996;22(2):98–212.Google Scholar
  22. 22.
    Dellinger JA, Kmiecek N, Gerstenberger S, Gnu H. Mercury contamination of fish in the Ojibwa diet: I. Walleye fillets and skin on versus skin off sampling. Water Air Soil Pollution 1995;80:69–76.CrossRefGoogle Scholar
  23. 23.
    Courval JM, DeHoog JV, Holzman CB, Tay EM, Fischer L, Humphrey HEB, et al. Fish consumption and other characteristics of reproductive-aged Michigan anglers - a potential population for studying the effects of consumption of Great Lakes fish on reproductive health. Toxicol Ind Health 1996;12:347–59.CrossRefGoogle Scholar
  24. 24.
    Courval JM, DeHoog JV, Stein AD, Tay EM, He J, Humphrey HEB, Paneth N. Sport-caught fish consumption and conception delay in licensed Michigan anglers. Environ Res 1999;80(Suppl 2):183–88.CrossRefGoogle Scholar
  25. 25.
    Falk L, Hanrahan L, Anderson HA, Kanarek MS, Draheim L, Needham L, et al. Body burdens levels of dioxins, furans, and PCBs among frequent consumers of Great Lakes sport fish. Environ Res 1999;80(Suppl 2):19–25.CrossRefGoogle Scholar
  26. 26.
    Waller DP, Presperin C, Drum ML, Negrusz A, Larsen AK, van der Ven H, Hibbard J. Great Lakes fish as a source of maternal and fetal exposure to chlorinated hydrocarbons. Toxicol Ind Health 1996;12:335–45.CrossRefGoogle Scholar
  27. 27.
    Tilden J, Hanrahan L, Anderson HA, Palit, C, Olson J, MacKenzie W. Health advisories for consumers of Great Lakes sport fish: Is the message being received? Environ Health Perspect 1997;105(12):1360–65.CrossRefGoogle Scholar
  28. 28.
    Mendola P, Buck GM, Sever LE, Zieiezny M, Vena JE. Consumption of PCB-contaminated freshwater fish and shortened menstrual cycle length. Am J Epidemiol 1997;146(11):955–60.CrossRefGoogle Scholar
  29. 29.
    Stewart P, Reihman J, Lonky E, Darvill T, Pagano J. Prenatal PCB exposure and neonatal behavioural assessment scale (NBAS) performance. Neurotoxicol Teratol 2000;22:21–29.CrossRefGoogle Scholar
  30. 30.
    Stewart P, Darvill T, Lonky E, Reihman J. Behavioural effects of consumption of Lake Ontario fish: Two methodological approaches — Progress Report to the Agency for Toxic Substances and Disease Registry, 1998.Google Scholar
  31. 31.
    Darvill T, Lonky E, Reihman J, Stewart P, Pagano J. Prenatal exposure to PCBs and infants’ performance on the Fagan Test of Intelligence. Neurotoxicol 2000;21(6):1029–38.Google Scholar
  32. 32.
    Dellinger JA, Gerstenberger SL, Hansen LK, Malek LL. Ojibwa Health Study: Assessing the Health Risks from Consuming Contaminated Great Lakes Fish. Health Conference’ 97 Great Lakes and St. Lawrence. Montreal, Quebec, Canada, 1997.Google Scholar
  33. 33.
    Dellinger JA, Gerstenberger SL, Hansen LK, Kmiecek N, Meyers RM, Gebhardt KJ, Malek LL. An assessment of a human population at risk: The impact of consuming contaminated Great Lakes fish on Native Americans — Progress Report to the Agency for Toxic Substances and Disease Registry, 1998.Google Scholar
  34. 34.
    Schantz SL, Gasior DM, Polverejan E, McCaffrey RJ, Sweeney AM, Humphrey HEB, Gardiner JC. Impairments of memory and learning in older adults exposed to polychlorinated biphenyls via consumption of Great Lakes fish. Environ Health Perspect 2001;109(6):605–11.CrossRefGoogle Scholar
  35. 35.
    Hicks HE, Cibulas W, De Rosa CT. The impact of environmental epidemiology/toxicology and public health practice in the Great Lakes. Environ Epidemiol Toxicol 2000;2:8–12.Google Scholar
  36. 36.
    Fitzgerald EF, Hwang S, Cook K, Worswick P. Fish consumption and breast milk PCB concentrations among Mohawk women at Akwesasne. Am J Epidemiol 1998;148:164–72.CrossRefGoogle Scholar
  37. 37.
    DeVito MJ, Birnbaum LS, Farland WH, Gaslewicz TA. Comparisons of estimated human body burdens of dioxin-like chemicals and TCDD body burdens in experimentally exposed animals. Environ Health Perspect 1995;103:820–31.CrossRefGoogle Scholar
  38. 38.
    World Health Organization. Levels of PCBs, PCDDs, and PCDFs in Breast Milk. World Health Organization Regional Office for Europe, Copenhagen, 1989.Google Scholar
  39. 39.
    Gilbertson M. Guest Commentary. Great Lakes Research Review 1995;1(2):3–4.Google Scholar
  40. 40.
    Jacobson JL, Jacobson SW. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 1996;335(11):783–89.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2000

Authors and Affiliations

  1. 1.U.S. Department of Health and Human ServicesAgency for Toxic Substances and Disease RegistryAtlantaUSA

Personalised recommendations