Advertisement

Canadian Journal of Public Health

, Volume 93, Supplement 1, pp S39–S44 | Cite as

Environmental Health Surveillance: Indicators for Freshwater Ecosystems

  • Robert D. Morris
  • Donald Cole
Article

Abstract

The relationship between the health of human populations and the state of the ecosystems in which they live is profoundly complex. As most environmental indicators relevant to human health depend on evidence of a direct cause and effect relationship, there are few indicators of the less direct consequences of environmental degradation on human health. Indicators of the direct consequence of contaminants in freshwater ecosystems on human health are highlighted in this paper and candidate indicators for environmental health are provided. Many of the indicators included here are from the State Of the Lakes Ecosystem Conference (SOLEC) program. SOLEC conferences in the past (1994 and 1996) examined the state of various components of the ecosystem through the use of ad hoc indicators, and provided subjective assessments of certain environmental conditions. At SOLEC 98, a comprehensive suite of 80 Great Lakes ecosystem health indicators was presented for review, refinement and acceptance. Candidate indicators for freshwater systems and environmental health presented here are organized following the “Pressure-State-Response” framework and cover the areas of drinking water, recreational water, freshwater food sources, and the availability of freshwater for economic activities.

Résumé

La relation entre la santé des populations humaines et l’état des écosystèmes où elles vivent est très complexe. Même si la plupart des indicateurs environnementaux liés à la santé humaine dépendent de la démonstration d’une relation directe de cause à effet, il existe néanmoins quelques indicateurs des conséquences moins directes de la dégradation de l’environnement sur la santé humaine. Les auteurs traitent des indicateurs des effets directs des contaminants dans les écosystèmes d’eau douce sur la santé humaine et proposent des indicateurs d’intérêt potentiel pour l’hygiène de l’environnement. Nombre de ces indicateurs sont tirés du programme de la Conférence sur l’état des écosystèmes lacustres (CEEL). Les conférences CEEL de 1994 et 1996 ont porté sur l’état de diverses composantes des écosystèmes à partir d’indicateurs ad hoc et ont fourni des évaluations subjectives de certaines conditions environnementales. Lors de la CEEL 1998, on a présenté une série exhaustive de 80 indicateurs de l’état de l’écosystème des Grands Lacs en vue de les examiner, les raffiner et les approuver. Les indicateurs potentiels pour les écosystèmes d’eau douce et l’hygiène de l’environnement présentés dans cet article sont organisés d’après le cadre Pression-État-Réaction et couvrent les secteurs de l’eau potable, des eaux utilisées à des fins récréatives, des sources de nourriture en eau douce et de la disponibilité de l’eau douce pour des activités économiques.

References

  1. 1.
    Chen CJ, Kuo TL, Wu MM. Arsenic and cancers (letter). Lancet 1988;(i):414–15.CrossRefGoogle Scholar
  2. 2.
    Wu MM, Kuo TL, Hwang YH, Chen CJ. Dose-response relation between arsenic well water and mortality from cancer. Am J Epidemiol 1989;130:1123–32.CrossRefGoogle Scholar
  3. 3.
    Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, et al. Cancer risks from arsenic in drinking water. Environ Health Perspect 1992;97:259–67.CrossRefGoogle Scholar
  4. 4.
    Neuberger JS. Residential radon exposure and lung cancer: An overview of published studies. Cancer Detection and Prevention 1991;15:435–43.PubMedGoogle Scholar
  5. 5.
    Brown DJ, Cothern CR. A Bayesian analysis of scientific judgment of uncertainties in estimating risk due to 222 Rn in US public drinking water supplies. Health Physics 1987;53:11–21.CrossRefGoogle Scholar
  6. 6.
    Tao XG, Zhu HG, Yu SZ, Zhao QY, Wang JR, Wu GD, et al. Effects of drinking water from the lower reaches of the Huangpu River on the risk of male stomach and liver cancer death. Public Health Reviews 1991–1992;19:229–36.PubMedGoogle Scholar
  7. 7.
    Xu G, Song P, Reed PI. The relationship between gastric mucosal changes and nitrate intake via drinking water in a high-risk population for gastric cancer in Moping county, China. Eur J Cancer Prev 1992;1(6):437–43.CrossRefGoogle Scholar
  8. 8.
    Tao XG, Zhu HG, Yu SZ, Zhao QY, Wang JR, Wu GD, et al. Pilot study on the relationship between male stomach and liver cancer death and the mutagenicity of drinking water in the Huangpu River area. Public Health Reviews 1991–1992;19:219–27.Google Scholar
  9. 9.
    Leclerc H, Vincent P, Vandevenne P. Nitrates de l’eau de boisson et cancer. Annales de gastro-entérologie et d’hépatologie 1991;27:326–32.Google Scholar
  10. 10.
    National Research Council. Environmental Epidemiology: Volume 1: Public Health and Hazardous Wastes. Washington, DC: National Academy Press, 1991.Google Scholar
  11. 11.
    Fagliano JM, Berry M, Bove F, Burke T. Drinking water contamination and the incidence of leukemia: An ecologic study. Am J Public Health 1990;80:1209–12.CrossRefGoogle Scholar
  12. 12.
    Griffith J, Duncan RC, Riggan WB, Pellom AC. Cancer mortality in US counties with hazardous waste sites and ground water pollution. Arch Environ Health 1989;44:69–74.CrossRefGoogle Scholar
  13. 13.
    Lagakos SW, Wessen BJ, Zelen M. An analysis of contaminated well water and health effects in Woburn, Massachusetts. JASA 1986;81:583–96.CrossRefGoogle Scholar
  14. 14.
    Rook JJ. Formation of haloforms during chlorination of natural waters. J Soc Water Treatment and Examination 1974;23:234–43.Google Scholar
  15. 15.
    Symons JM. National Organics Reconnaissance Survey for Halogenated Organics. J Amer Water Assoc November 1975.Google Scholar
  16. 16.
    Morris RD, Audet AM, Angelillo IF, Chalmers TC, Mosteller F. Chlorination, chlorination byproducts, and cancer: A meta-analysis. Am J Public Health 1992;82:955–63.CrossRefGoogle Scholar
  17. 17.
    McGeehin MA, Reif JS, Becher JC, Mangione EJ. Case-control study of bladder cancer and water disinfection methods in Colorado. Am J Epidemiol 1993;138:492–501.CrossRefGoogle Scholar
  18. 18.
    Koivusalo M, Jaakkola JJ, Varitiainen T, Jakulinen T, Karjalainen S, Pukkala E, Tuomisto J. Drinking water mutagenicity and gastrointestinal and urinary tract cancers: An ecological study in Finland. Am J Public Health 1994;84:1223–28.CrossRefGoogle Scholar
  19. 19.
    Dawson J, Eyles J, Keating L, Khan H, Kraft D, Murkin E, et al. Final Report of the Great Lakes Fish Eaters Project: Dietary Survey & Assessment of Potential Risks and Benefits. Volumes 1 & 2. Sheeshka J, Cole D (Eds.). Submitted to Health Canada.Google Scholar
  20. 20.
    Tsukatani T. The Aral Sea and socio-economic development. In: Kobori I, Glantz MH (Eds.), Central Eurasian Water Crisis: Caspian, Aral and Dead Seas. Tokyo: United Nations University Press, 1998;53–74.Google Scholar
  21. 21.
    Upshur REG. Report of environmental health consultation regarding the health impacts of the Aral Sea disaster. Hamilton, ON: Environmental Health Program, McMaster University, 1998.Google Scholar
  22. 22.
    International Joint Commission. Protection of the Water of the Great Lakes. Interim report to the governments of Canada and the United States. Washington & Ottawa: IJC, 1999. Available on-line at http://www.ijc.org.Google Scholar

Copyright information

© The Canadian Public Health Association 2000

Authors and Affiliations

  1. 1.School of MedicineTufts UniversityBostonUSA
  2. 2.Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations