Advertisement

Canadian Journal of Public Health

, Volume 103, Supplement 3, pp S42–S47 | Cite as

Safe Cycling: How Do Risk Perceptions Compare With Observed Risk?

  • Meghan WintersEmail author
  • Shelina Babul
  • H. J. E. H. (Jack) Becker
  • Jeffrey R. Brubacher
  • Mary Chipman
  • Peter Cripton
  • Michael D. Cusimano
  • Steven M. Friedman
  • M. Anne Harris
  • Garth Hunte
  • Melody Monro
  • Conor C. O. Reynolds
  • Hui Shen
  • Kay Teschke
Quantitative Research
  • 1 Downloads

Abstract

Objective

Safety concerns deter cycling. The Bicyclists’ Injuries and the Cycling Environment (BICE) study quantified the injury risk associated with 14 route types, from off-road paths to major streets. However, when it comes to injury risk, there may be discordance between empirical evidence and perceptions. If so, even if protective infrastructure is built people may not feel safe enough to cycle. This paper reports on the relationship between perceived and observed injury risk.

Methods

The BICE study is a case-crossover study that recruited 690 injured adult cyclists who visited emergency departments in Toronto and Vancouver. Observed risk was calculated by comparing route types at the injury sites with those at randomly selected control sites along the same route. The perceived risk was the mean response of study participants to the question "How safe do you think this site was for cyclists on that trip?", with responses scored from +1 (very safe) to -1 (very dangerous). Perceived risk scores were only calculated for non-injury control sites, to reduce bias by the injury event.

Results

The route type with the greatest perceived risk was major streets with shared lanes and no parked cars (mean score = -0.21, 95% confidence interval [CI]: -0.54–0.11), followed by major streets without bicycle infrastructure (-0.07, CI -0.14–0.00). The safest perceived routes were paved multi-use paths (0.66, CI 0.43–0.89), residential streets (0.44, CI 0.37–0.51), bike paths (0.42, CI 0.25–0.60) and residential streets marked as bike routes with traffic calming (0.41, CI 0.32–0.51). Most route types that were perceived as higher risk were found to be so in our injury study; similarly, most route types perceived as safer were also found to be so. Discrepancies were observed for cycle tracks (perceived as less safe than observed) and for multiuse paths (perceived as safer than observed).

Conclusions

Route choices and decisions to cycle are affected by perceptions of safety, and we found that perceptions usually corresponded with observed safety. However, perceptions about certain separated route types did not align well. Education programs and social media may be ways to ensure that public perceptions of route safety reflect the evidence.

Key terms

Safety transportation injury environmental design 

Mots clés

sécurité transports traumatismes conception de l’environnement 

Résumé

Objectif

Les préoccupations quant à la sécurité ont un effet dissuasif sur le cyclisme. L’étude BICE (Bicyclists’ Injuries and the Cycling Environment) a quantifié le risque de blessure associé à 14 types de routes - des sentiers hors route aux grandes artères. Lorsqu’il s’agit du risque de blessure, il peut y avoir discordance entre les preuves empiriques et les perceptions. Quand c’est le cas, même si l’on construit des infrastructures de protection, les gens peuvent ne pas se sentir suffisamment en sécurité pour faire du vélo. Notre article porte sur la relation entre le risque de blessure subjectif et observé.

Méthode

L’étude BICE est une étude de type «case-crossover» pour laquelle nous avons recruté 690 cyclistes adultes s’étant rendus aux services d’urgence de Toronto et de Vancouver après un accident de vélo. Nous avons calculé le risque observé en comparant le type de route sur le lieu de l’accident avec les types de routes sur des lieux sélectionnés au hasard le long du même parcours. Le risque subjectif était la réponse moyenne des participants de l’étude à la question: «Quel était le niveau de sécurité de cet endroit pour les cyclistes durant ce trajet?»; les réponses ont été classées de +1 (très sûr) à -1 (très dangereux). Les scores de risque subjectif n’ont été calculés que pour les lieux témoins (sans accident) afin de réduire le biais induit par l’accident.

Résultats

Les types de routes présentant le plus grand risque subjectif étaient les grandes artères avec voie partagée, sans voitures garées (score moyen = -0,21, intervalle de confiance [IC] de 95 %: -0,54–0,11), suivies des grandes artères sans infrastructures cyclables (-0,07, IC -0,14–0,00). Les routes perçues comme étant les plus sûres étaient les sentiers multi-usages asphaltés (0,66, IC 0,43–0,89), les rues résidentielles (0,44, IC 0,37–0,51), les pistes cyclables (0,42, IC 0,25–0,60) et les rues résidentielles marquées pour les bicyclettes et comportant des mesures de modération de la circulation (0,41, IC 0,32–0,51). La plupart des types de routes perçues comme étant plus dangereuses étaient de fait plus dangereuses dans notre étude; de même, la plupart des types de routes perçues comme étant moins dangereuses l’étaient effectivement. Des divergences ont été notées pour les pistes cyclables (le risque subjectif étant plus élevé que le risque observé) et pour les sentiers multi-usages (le risque observé étant plus élevé que le risque subjectif).

Conclusions

Le choix d’une route et la décision de faire du vélo sont influencés par les perceptions de la sécurité, et nous avons constaté que ces perceptions correspondent généralement à la sécurité objective. Toutefois, les perceptions de certains types de voies séparées concordent moins avec la réalité. Des programmes de sensibilisation du public et dans les médias sociaux pourraient faire en sorte que les perceptions de la sécurité des routes par le public reflètent les données probantes.

References

  1. 1.
    Winters M, Davidson G, Kao DN, Teschke K. Motivators and deterrents of bicycling: Comparing influences on decisions to ride. Transportation 2011;38(1):153–68.CrossRefGoogle Scholar
  2. 2.
    Bhat CR, Sener IN, Eluru N. Who are bicyclists? Why and how much are they bicycling? Tramp Res Record 2009;2134:63–72.CrossRefGoogle Scholar
  3. 3.
    Beck LF, Dellinger AM, O’Neil ME. Motor vehicle crash injury rates by mode of travel, United States: Using exposure-based methods to quantify differences. Am J Epidemiol 2007;166(2):212–18.CrossRefGoogle Scholar
  4. 4.
    Transport Canada. Canadian Motor Vehicle Traffic Collision Statistics: 2006. TP 3322. Available at: https://doi.org/www.tc.gc.ca/eng/roadsafety/tp-tp3322-2006-menu-586.htm (Accessed November 12, 2011).Google Scholar
  5. 5.
    Statistics Canada. Commuting Patterns and Places of Work of Canadians, 2006 Census. Catalogue no. 97-561-X, 2006 Available at: https://doi.org/www12.stat-can.ca/census-recensement/2006/as-sa/97-561/tables-tableaux-notes-eng.cfm (Accessed May 1, 2011).Google Scholar
  6. 6.
    Babul S, Frendo T, Winters M, Brubacher J, Chipman M, Chisholm D, et al. Injuries to adult cyclists in Toronto and Vancouver: Describing the circumstances as a first step towards injury prevention. Safety 2010 World Conference, London, England, 2010.Google Scholar
  7. 7.
    de Geus B, Vandenbulcke G, Int Panis L, Thomas I, Degraeuwe B, Cumps E, et al. A prospective cohort study on minor accidents involving commuter cyclists in Belgium. Acrid Anal Prev 2012;45:683–93.CrossRefGoogle Scholar
  8. 8.
    Joshi MS, Smith GP. Cyclists under threat: A survey of Oxford cyclists’ perceptions of risk. Health Educ J 1992;51(4):188–91.CrossRefGoogle Scholar
  9. 9.
    Stutts JC, Williamson JE, Whitley T, Sheldon FC. Bicycle accidents and injuries: A pilot study comparing hospital- and police-reported data. Accid Anal Prev 1990;22(1):67–78.CrossRefGoogle Scholar
  10. 10.
    Juhra C, Wieskötter B, Chu K, Trost L, Weiss U, Messerschmidt M, et al. Bicycle accidents–Do we only see the tip of the iceberg? A prospective multi-centre study in a large German city combining medical and police data. Injury November 18, 2011; Epub ahead of print.Google Scholar
  11. 11.
    Pucher J, Dill J, Handy S. Infrastructure, programs, and policies to increase bicycling: An international review. Prev Med 2010;50:S106–S125.CrossRefGoogle Scholar
  12. 12.
    Teschke K, Harris M, Reynolds C, Winters M, Babul S, Chipman M, et al. Route infrastructure and the risk of injuries to bicyclists–a case-crossover study. Am J Public Health (in press).Google Scholar
  13. 13.
    Dill J, Voros K. Factors affecting bicycling demand: Initial survey findings from the Portland, Oregon, region. Transp Res Record 2007;2031:9–17.CrossRefGoogle Scholar
  14. 14.
    Leiss W, Chociolko C. Risk and Responsibility. Montreal & Kingston: McGill-Queen’s University Press, 1994.Google Scholar
  15. 15.
    Slovic P. Perception of risk. Science 1987;236(4799):280–85.CrossRefGoogle Scholar
  16. 16.
    Sjöberg L, Moen B, Rundmo T. Explaining Risk Perception. An Evaluation of the Psychometric Paradigm in Risk Perception Research. Trondheim, Norway: Rotunde publikasjoner, 2004.Google Scholar
  17. 17.
    Noland R. Perceived risk and modal choice: Risk compensation in transportation systems. Accid Anal Prev 1995;27(4):503–21.CrossRefGoogle Scholar
  18. 18.
    Harris MA, Reynolds CC, Winters M, Chipman M, Cripton PA, Cusimano MD, et al. The Bicyclists’ Injuries and the Cycling Environment study: A protocol to tackle methodological issues facing studies of bicycling safety. Inj Prev 2011;17(5):e6.CrossRefGoogle Scholar
  19. 19.
    Dill J. Bicycling for transportation and health: The role of infrastructure. J Public Health Policy 2009;30:S95–S110.CrossRefGoogle Scholar
  20. 20.
    Winters M, Teschke K. Route preferences among adults in the near market for bicycling: Findings of the Cycling in Cities Study. Am J Health Promot 2010;25(1):40–47.CrossRefGoogle Scholar
  21. 21.
    Pucher J, Buehler R. Making cycling irresistible: Lessons from the Netherlands, Denmark and Germany. Transport Rev 2008;28(4):495–528.CrossRefGoogle Scholar
  22. 22.
    Rivara FP, Thompson DC, Thompson RS. Epidemiology of bicycle injuries and risk factors for serious injury. Inj Prev 1997;3(2):110–14.CrossRefGoogle Scholar
  23. 23.
    Morgan AS, Dale HB, Lee WE, Edwards PJ. Deaths of cyclists in London: Trends from 1992 to 2006. BMC Public Health 2010;10:699.CrossRefGoogle Scholar
  24. 24.
    Parkin J, Wardman M, Page M. Models of perceived cycling risk and route acceptability. Accid Anal Prev 2007;39(2):364–71.CrossRefGoogle Scholar
  25. 25.
    Reynolds CCO, Harris MA, Teschke K, Cripton PA, Winters M. The impact of transportation infrastructure on bicycling injuries and crashes: A review of the literature. Environ Health Perspect 2009;8:47.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2012

Authors and Affiliations

  • Meghan Winters
    • 1
    Email author
  • Shelina Babul
    • 2
  • H. J. E. H. (Jack) Becker
    • 3
  • Jeffrey R. Brubacher
    • 4
  • Mary Chipman
    • 5
  • Peter Cripton
    • 6
  • Michael D. Cusimano
    • 7
  • Steven M. Friedman
    • 8
  • M. Anne Harris
    • 9
  • Garth Hunte
    • 4
  • Melody Monro
    • 10
  • Conor C. O. Reynolds
    • 11
  • Hui Shen
    • 10
  • Kay Teschke
    • 10
  1. 1.Faculty of Health SciencesSimon Fraser UniversityVancouverCanada
  2. 2.Department of PediatricsUniversity of British ColumbiaVancouverCanada
  3. 3.Third Wave Cycling Group Inc.Canada
  4. 4.Department of Emergency Medicine, Faculty of MedicineUniversity of British ColumbiaCanada
  5. 5.Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
  6. 6.Department of Mechanical EngineeringUniversity of British ColumbiaCanada
  7. 7.Neurosurgery, St. Michael’s HospitalUniversity of TorontoCanada
  8. 8.Faculty of MedicineUniversity of Toronto, University Health NetworkTorontoCanada
  9. 9.Occupational Cancer Research CentreCancer Care OntarioCanada
  10. 10.School of Population and Public HealthUniversity of British ColumbiaCanada
  11. 11.Liu Institute for Global IssuesUniversity of British ColumbiaCanada

Personalised recommendations