Advertisement

Canadian Journal of Public Health

, Volume 103, Supplement 3, pp S22–S28 | Cite as

Smart Cities, Healthy Kids: The Association Between Neighbourhood Design and Children’s Physical Activity and Time Spent Sedentary

  • Dale W. Esliger
  • Lauren B. Sherar
  • Nazeem MuhajarineEmail author
Quantitative Research
  • 1 Downloads

Abstract

Objectives

To determine whether, and to what extent, a relation exists between neighbourhood design and children’s physical activity and sedentary behaviours in Saskatoon.

Methods

Three neighbourhood designs were assessed: 1) core neighbourhoods developed before 1930 that follow a grid pattern, 2) fractured-grid pattern neighbourhoods that were developed between the 1930s and mid-1960s, and 3) curvilinear-pattern neighbourhoods that were developed between the mid-1960s through to 1998. Children aged 10–14 years (N=455; mean age 11.7 years), grouped by the neighbourhoods they resided in, had their physical activity and sedentary behaviour objectively measured by accelerometry for 7 days. ANCOVA and MANCOVA (multivariate analysis of covariance) models were used to assess group differences (p<0.05).

Results

Group differences were apparent on weekdays but not on weekend days. When age, sex and family income had been controlled for, children living in fractured-grid neighbourhoods had, on average, 83 and 55 fewer accelerometer counts per minute on weekdays than the children in the core and curvilinear-pattern neighbourhoods, respectively. Further analyses showed that the children in the fractured-grid neighbourhoods accumulated 15 and 9 fewer minutes of moderate-to-vigorous physical activity per day and had a greater time spent in sedentary behaviour (23 and 17 minutes) than those in core and curvilinear-pattern neighbourhoods, respectively.

Conclusion

These data suggest that in Saskatoon there is a relation between neighbourhood design and children’s physical activity and sedentary behaviours. Further work is needed to tease out which features of the built environments have the greatest impact on these important lifestyle behaviours. This information, offered in the context of ongoing development of neighbourhoods, as we see in Saskatoon, is critical to an evidence-informed approach to urban development and planning.

Key words

Urban built environment accelerometer lifestyle city planning 

Mots clés

urbain milieu bâti accéléromètre mode de vie urbanisme 

Résumé

Objectifs

Déterminer s’il existe une relation, et si oui de quelle ampleur, entre, d’une part, la conception du quartier et, d’autre part, l’activité physique et les comportements sédentaires des enfants à Saskatoon.

Méthode

Trois types de quartiers ont été évalués: 1) les quartiers du centre-ville datant d’avant 1930, à l’agencement quadrillé, 2) les quartiers scindés à agencement quadrillé datant des années 1930 au milieu des années 1 960 et 3) les quartiers à agencement curviligne datant du milieu des années 1960 à 1 998. Nous avons mesuré objectivement par accélérométrie, pendant 7 jours, l’activité physique et les comportements sédentaires d’enfants de 10 à 14 ans (N=455; âge moyen 11,7 ans), regroupés selon leur quartier domiciliaire. Des modèles ANCOVA et MANCOVA (analyse multivariée de la covariance) ont servi à l’évaluation des différences entre les groupes (p<0,05).

Résultats

Nous avons constaté des différences entre les groupes les jours de semaine, mais non les samedis et dimanches. Après ajustement selon l’âge, le sexe et le revenu familial, les enfants habitant des quartiers scindés à agencement quadrillé enregistraient en moyenne 83 et 55 points d’accéléromètre de moins par minute les jours de semaine que les enfants des quartiers du centre-ville et des quartiers à agencement curviligne, respectivement. Une analyse plus poussée a montré que les enfants des quartiers scindés à agencement quadrillé accumulaient 15 et 9 minutes de moins d’activité physique modérée à vigoureuse par jour et consacraient plus de temps à des comportements sédentaires (23 et 1 7 minutes) que ceux des quartiers du centre-ville et des quartiers à agencement curviligne, respectivement.

Conclusion

Ces données montrent qu’à Saskatoon, il y a une relation entre la conception des quartiers et l’activité physique et les comportements sédentaires des enfants. Il faudrait pousser la recherche pour «démêler» quelles caractéristiques des milieux bâtis ont le plus d’impact sur ces importants comportements liés au mode de vie. Cette information, présentée dans le contexte du développement en cours des quartiers, comme on le voit à Saskatoon, est essentielle à une démarche de planification et de développement urbain fondée sur des preuves.

References

  1. 1.
    Cooper AR, Page AS, Wheeler BW, Hillsdon M, Griew P, Jago R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: The PEACH project. Int J Behav Nutr Phys Act 2010;7:31.CrossRefGoogle Scholar
  2. 2.
    Sundquist K, Eriksson U, Kawakami N, Skog L, Ohlsson H, Arvidsson D. Neighborhood walkability, physical activity, and walking behavior: The Swedish Neighborhood and Physical Activity (SNAP) study. Soc Sci Med 2011;72(8):1266–73.CrossRefGoogle Scholar
  3. 3.
    Maddison R, Hoorn SV, Jiang Y, Mhurchu CN, Exeter D, Dorey E, et al. The environment and physical activity: The influence of psychosocial, perceived and built environmental factors. Int J Behav Nutr Phys Act 2009;6:19.CrossRefGoogle Scholar
  4. 4.
    Rodriguez DA, Cho GH, Evenson KR, Conway TL, Cohen D, Ghosh-Dastidar B, et al. Out and about: Association of the built environment with physical activity behaviors of adolescent females. Health Place 2012;18(1):55–62.CrossRefGoogle Scholar
  5. 5.
    De Meester F, Van Dyck D, De Bourdeaudhuij I, Deforche B, Sallis JF, Cardon G. Active living neighborhoods: Is neighborhood walkability a key element for Belgian adolescents? BMC Public Health 2012;12:7.CrossRefGoogle Scholar
  6. 6.
    Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth: A review. Am J Prev Med 2011;41(4):442–55.CrossRefGoogle Scholar
  7. 7.
    Ashe M, Graff S, Spector C. Changing places: Policies to make a healthy choice the easy choice. Public Health 2011;125(12):889–95.CrossRefGoogle Scholar
  8. 8.
    Srinivasan S, O’Fallon LR, Dearry A. Creating healthy communities, healthy homes, healthy people: Initiating a research agenda on the built environment and public health. Am J Public Health 2003;93(9):1446–50.CrossRefGoogle Scholar
  9. 9.
    Lavizzo-Mourey R, McGinnis JM. Making the case for active living communities. Am J Public Health 2003;93(9):1386–88.CrossRefGoogle Scholar
  10. 10.
    Dannenberg AL, Jackson RJ, Frumkin H, Schieber RA, Pratt M, Kochtitzky C, et al. The impact of community design and land-use choices on public health: A scientific research agenda. Am J Public Health 2003;93(9):1500–8.CrossRefGoogle Scholar
  11. 11.
    Durand CP, Andalib M, Dunton GF, Wolch J, Pentz MA. A systematic review of built environment factors related to physical activity and obesity risk: Implications for smart growth urban planning. Obes Rev 2011;12(5):e173–e182.CrossRefGoogle Scholar
  12. 12.
    City of Saskatoon Urban Design–Land Branch. Public Spaces, Activity and Urban Form: Strategic Framework–City Centre Plan Phase 1. 2011.Google Scholar
  13. 13.
    Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med 2003;37(3):197–206.CrossRefGoogle Scholar
  14. 14.
    Esliger DW, Tremblay MS, Copeland JL, Barnes JD, Huntington GE, Bassett DR, Jr. Physical activity profile of Old Order Amish, Mennonite, and contemporary children. Med Sci Sports Exerc 2010;42(2):296–303.CrossRefGoogle Scholar
  15. 15.
    Esliger DW, Tremblay MS. Physical activity and inactivity profiling: The next generation. Can J Public Health 2007;98(Suppl 2):S195–S207.PubMedGoogle Scholar
  16. 16.
    Colley RC, Tremblay MS. Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. J Sports Sci 2011;29(8):783–89.CrossRefGoogle Scholar
  17. 17.
    Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 2011;22(1):15–23.Google Scholar
  18. 18.
    Gordon-Larsen P, McMurray RG, Popkin BM. Determinants of adolescent physical activity and inactivity patterns. Pediatrics 2000;105(6):E83.CrossRefGoogle Scholar
  19. 19.
    Butcher K, Sallis JF, Mayer JA, Woodruff S. Correlates of physical activity guideline compliance for adolescents in 100 U.S. Cities. J Adolesc Health 2008;42(4):360–68.CrossRefGoogle Scholar
  20. 20.
    Jago R, Page A, Froberg K, Sardinha LB, Klasson-Heggebo L, Andersen LB. Screen-viewing and the home TV environment: The European Youth Heart Study. Prev Med 2008;47(5):525–29.CrossRefGoogle Scholar
  21. 21.
    WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl 2006;450:76–85.Google Scholar
  22. 22.
    Nader PR, Bradley RH, Houts RM, McRitchie SL, O’Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA 2008;300(3):295–305.CrossRefGoogle Scholar
  23. 23.
    Treuth MS, Catellier DJ, Schmitz KH, Pate RR, Elder JP, McMurray RG, et al. Weekend and weekday patterns of physical activity in overweight and normal-weight adolescent girls. Obesity (Silver Spring) 2007;15(7):1782–88.CrossRefGoogle Scholar
  24. 24.
    Ness AR, Leary SD, Mattocks C, Blair SN, Reilly JJ, Wells J, et al. Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med 2007;4(3):e97.CrossRefGoogle Scholar
  25. 25.
    Holt NL, Spence JC, Sehn ZL, Cutumisu N. Neighborhood and developmental differences in children’s perceptions of opportunities for play and physical activity. Health Place 2008;14(1):2–14.CrossRefGoogle Scholar
  26. 26.
    Handy S, Paterson RG, Butler K. Planning for Street Connectivity: Getting from Here to There. Chicago, IL: American Planning Association, 2003.Google Scholar
  27. 27.
    Mackett R, Brown B, Gong Y, Paskins J. Children’s independent movement in the local environment. Built Environment 2007;33:454–68.CrossRefGoogle Scholar
  28. 28.
    Grammenos F. The fused grid: A contemporary urban pattern. Available at: https://doi.org/www.fusedgridca/contactusphp2008 (Accessed February 2, 2012).Google Scholar
  29. 29.
    Montoye HJ, Kemper HCG, Saris WHM, Washburn RA. Measuring Physical Activity and Energy Expenditure. Champaign, IL: Human Kinetics, 1996.Google Scholar
  30. 30.
    Jones AP, Coombes EG, Griffin SJ, van Sluijs EM. Environmental supportive-ness for physical activity in English schoolchildren: A study using global positioning systems. Int J Behav Nutr Phys Act 2009;6:42.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2012

Authors and Affiliations

  • Dale W. Esliger
    • 1
  • Lauren B. Sherar
    • 1
  • Nazeem Muhajarine
    • 2
    Email author
  1. 1.Physical Activity and Public Health, School of Sport, Exercise and Health SciencesLoughborough UniversityUK
  2. 2.Community Health and Epidemiology, College of MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations