Advertisement

Canadian Journal of Public Health

, Volume 98, Issue 3, pp 203–208 | Cite as

Seasonal Variation in Leisure-time Physical Activity Among Canadians

  • Anwar T. Merchant
  • Mahshid Dehghan
  • Noori Akhtar-Danesh
Article

Abstract

Background

Cardiovascular disease (CVD) mortality is higher in winter than summer, particularly in cold climates. Physical activity reduces CVD risk but climate impacts participation in physical activity. Canada has substantial climatic variation but its relation with physical activity is understudied. In this investigation, we evaluated the relation between seasonality and physical activity among Canadians.

Methods

We used public domain data from the Canadian Community Health Survey, Cycle 2.2 (CCHS 2.2), a representative, cross-sectional sample of free-living Canadians in 2004. Leisure-time physical activity was measured using a modified version of the Physical Activity Monitor that was validated. Season was determined by the time of the interview, i.e., Winter: January 1 to March 31, Spring: April 1 to June 30, Summer: July 1 to September 30, and Fall: October 1 to December 31. In all multivariate models, we adjusted for age, sex, education, and income adequacy.

Results

There were 20,197 persons aged 19 years and older in this analysis. In the winter, 64% of Canadians were inactive as compared with 49% in the summer. Total average daily energy expenditure was 31.0% higher in summer than winter after multivariate adjustment. Leisure-time physical activity was 86% more likely in the summer than winter (multivariate OR=1.86, 95% CI 1.40, 2.45). The relation between seasonality and physical activity was weakest in Newfoundland and Labrador and stronger in Saskatchewan and British Columbia (p-value for interaction=0.02).

Interpretation

Seasonality impacts physical activity patterns in Canada and varies across the provinces. This needs to be considered in physical activity programming.

MeSH terms

Seasons physical activity Canada 

Résumé

Contexte

La mortalité due aux maladies cardiovasculaires (MCV) est plus élevée l’hiver que l’été, surtout sous les climats froids. L’activité physique réduit le risque de MCV, mais le climat a une incidence sur la participation à l’activité physique. Il existe des variations climatiques importantes au Canada, mais leurs liens avec l’activité physique n’ont pas été suffisamment étudiés. Dans cette étude, nous avons analysé la relation entre les cycles saisonniers et l’activité physique dans la population canadienne.

Méthode

Nous avons utilisé les données du domaine public de L’Enquête sur la santé dans les collectivités canadiennes, cycle 2.2 (ESCC 2.2), soit un échantillon représentatif transversal de Canadiens en milieu naturel en 2004. Nous avons mesuré l’activité physique durant les loisirs à l’aide d’une version modifiée et validée du Sondage indicateur de l’activité physique. La saison a été déterminée selon le moment des entretiens: l’hiver du 1er janvier au 31 mars, le printemps du 1er avril au 30 juin, l’été du 1er juillet au 30 septembre, et l’automne du 1er octobre au 31 décembre. Dans tous nos modèles à plusieurs variables, nous avons apporté les ajustements nécessaires selon l’âge, le sexe, le revenu (adéquat ou non adéquat) et l’instruction.

Résultats

Notre analyse a porté sur 20 197 personnes de 19 ans et plus. L’hiver, 64 % des Canadiens étaient sédentaires, contre 49 % l’été. La force dépensée quotidiennement était en moyenne de 31 % plus élevée l’été que l’hiver, après l’apport des ajustements nécessaires. L’activité physique durant les loisirs était plus courante l’été que l’hiver, dans une proportion de 86 % (RC multivarié=1,86, IC de 95 %=1,40-2,45). Nous avons observé la relation la plus faible entre les cycles saisonniers et l’activité physique à Terre-Neuve-et-Labrador et la relation la plus forte en Saskatchewan et en Colombie-Britannique (valeur prédictive d’interaction=0,02).

Interprétation

Les cycles saisonniers influent sur les habitudes d’activité physique au Canada, et cette influence varie d’une province à l’autre. Ce sont des aspects dont il faudrait tenir compte dans les programmes d’activité physique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodgers A, Ezzati M, Vander HS, Lopez AD, Lin RB, Murray, CJ. Distribution of major health risks: Findings from the Global Burden of Disease study. PLoS Med 2004;1:e27.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Haapanen-Niemi N, Vuori I, Pasanen M. Public health burden of coronary heart disease risk factors among middle-aged and elderly men. Prev Med 1999;28:343–48.CrossRefPubMedGoogle Scholar
  3. 3.
    Garrett NA, Brasure M, Schmitz KH, Schultz MM, Huber, MR. Physical inactivity: Direct cost to a health plan. Am J Prev Med 2004;27:304–9.PubMedGoogle Scholar
  4. 4.
    Canadian Community Health Survey 2004. User Guide for the Public Use Microdata File. 2005. Ottawa, Statistics Canada: Health Statistics Division.Google Scholar
  5. 5.
    Katzmarzyk PT, Janssen I. The economic costs associated with physical inactivity and obesity in Canada: An update. Can J Appl Physiol 2004;29:90–115.CrossRefPubMedGoogle Scholar
  6. 6.
    Iwane M, Arita M, Tomimoto S, Satani O, Matsumoto M, Miyashita K, et al. Walking 10,000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension. Hypertens Res 2000;23:573–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Mora S, Lee IM, Buring JE, Ridker, PM. Association of physical activity and body mass index with novel and traditional cardiovascular biomarkers in women. JAMA 2006;295:1412–19.CrossRefPubMedGoogle Scholar
  8. 8.
    Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: A meta-analysis of randomized, controlled trials. Ann Intern Med 2002;136:493–503.CrossRefPubMedGoogle Scholar
  9. 9.
    Braga AL, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 2002;110:859–63.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tanaka H, Shinjo M, Tsukuma H, Kawazuma Y, Shimoji S, Kinoshita N, et al. Seasonal variation in mortality from ischemic heart disease and cerebrovascular disease in Okinawa and Osaka: The possible role of air temperature. J Epidemiol 2000;10:392–98.CrossRefPubMedGoogle Scholar
  11. 11.
    Ockene IS, Chiriboga DE, Stanek EJ, III, Harmatz MG, Nicolosi R, Saperia G, et al. Seasonal variation in serum cholesterol levels: Treatment implications and possible mechanisms. Arch Intern Med 2004;164:863–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Charach G, Rabinovich PD, Weintraub M. Seasonal changes in blood pressure and frequency of related complications in elderly Israeli patients with essential hypertension. Gerontology 2004;50:315–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Goodwin J, Pearce VR, Taylor RS, Read KL, Powers, SJ. Seasonal cold and circadian changes in blood pressure and physical activity in young and elderly people. Age Ageing 2001;30:311–17.CrossRefPubMedGoogle Scholar
  14. 14.
    Hermida RC, Calvo C, Ayala DE, Lopez JE, Fernandez JR, Mojon A, et al. Seasonal variation of fibrinogen in dipper and nondipper hypertensive patients. Circulation 2003;108:1101–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Sung, KC. Seasonal variation of C-reactive protein in apparently healthy Koreans. Int J Cardiol 2006;107:338–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Merrill RM, Shields EC, White GL, Jr., Druce D. Climate conditions and physical activity in the United States. Am J Health Behav 2005;29:371–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Matthews CE, Hebert JR, Freedson PS, Stanek EJ, III, Merriam PA, Ebbeling CB, et al. Sources of variance in daily physical activity levels in the seasonal variation of blood cholesterol study. Am J Epidemiol 2001;153:987–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Feldman DE, Platt R, Dery V, Kapetanakis C, Lamontagne D, Ducharme A, et al. Seasonal congestive heart failure mortality and hospitalisation trends, Quebec 1990–1998. J Epidemiol Community Health 2004;58:129–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Tremblay MS, Shephard RJ, McKenzie TL, Gledhill N. Physical activity assessment options within the context of the Canadian Physical Activity, Fitness, and Lifestyle Appraisal. Can J Appl Physiol 2001;26:388–407.CrossRefPubMedGoogle Scholar
  20. 20.
    Craig CL, Russell SJ, Cameron C. Reliability and validity of Canada’s Physical Activity Monitor for assessing trends. Med Sci Sports Exerc 2002;34:1462–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Canadian Guidelines for Body Weight Classification in Adults. Health Canada. 2003. Available online at: https://doi.org/www.hc-sc.gc.ca/fnan/ alt_formats/hpfb-dgpsa/pdf/nutrition/weight_ book-livres_des_poids_e.pdf (Accessed April 24, 2007).Google Scholar
  22. 22.
    Plasqui G, Westerterp, KR. Seasonal variation in total energy expenditure and physical activity in Dutch young adults. Obes Res 2004;12:688–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Pivarnik JM, Reeves MJ, Rafferty, AP. Seasonal variation in adult leisure-time physical activity. Med Sci Sports Exerc 2003;35:1004–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Canadian Climate Normals or Averages 1971–2000. Environment Canada. 2006. Available online at: https://doi.org/www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html (Accessed April 24, 2007).Google Scholar
  25. 25.
    Warburton DE, Nicol CW, Bredin, SS. Health benefits of physical activity: The evidence. CMAJ 2006;174:801–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Popkin BM, Gordon-Larsen P. The nutrition transition: Worldwide obesity dynamics and their determinants. Int J Obes Relat Metab Disord 2004;28 Suppl 3:S2-S9.CrossRefPubMedGoogle Scholar
  27. 27.
    Lanningham-Foster L, Nysse LJ, Levine, JA. Labor saved, calories lost: The energetic impact of domestic labor-saving devices. Obes Res 2003;11:1178–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Bryan SN, Tremblay MS, Perez CE, Ardern CI, Katzmarzyk, PT. Physical activity and ethnicity: Evidence from the Canadian Community Health Survey. Can J Public Health 2006;97:271–76.PubMedGoogle Scholar
  29. 29.
    Anand SS, Yusuf S, Jacobs R, Davis AD, Yi Q, Gerstein H, et al. Risk factors, atherosclerosis, and cardiovascular disease among Aboriginal people in Canada: The Study of Health Assessment and Risk Evaluation in Aboriginal Peoples (SHARE-AP). Lancet 2001;358:1147–53.CrossRefPubMedGoogle Scholar
  30. 30.
    Anand SS, Yusuf S, Vuksan V, Devanesen D, Teo KK, Montague PA, et al. Differences in risk factors, atherosclerosis, and cardiovascular disease between ethnic groups in Canada: The Study of Health Assessment and Risk in Ethnic Groups (SHARE). Lancet 2000;356:279–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Kant AK, Graubard, BI. Eating out in America, 1987–2000: Trends and nutritional correlates. Prev Med 2004;38:243–49.CrossRefPubMedGoogle Scholar
  32. 32.
    Gordon-Larsen P, Nelson MC, Page P, Popkin, BM. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 2006;117:417–24.CrossRefPubMedGoogle Scholar

Copyright information

© The Canadian Public Health Association 2007

Authors and Affiliations

  • Anwar T. Merchant
    • 1
  • Mahshid Dehghan
    • 2
  • Noori Akhtar-Danesh
    • 1
    • 3
  1. 1.Clinical Epidemiology and Biostatistics, Population Health Research InstituteMcMaster UniversityHamiltonCanada
  2. 2.Department of Medicine and Hamilton General HospitalMcMaster UniversityCanada
  3. 3.School of NursingMcMaster UniversityCanada

Personalised recommendations