Advertisement

Canadian Journal of Public Health

, Volume 96, Issue 3, pp 167–172 | Cite as

The Unbearable Lightness of “Light” Cigarettes

A Comparison of Smoke Yields in Six Varieties of Canadian “Light” Cigarettes
  • Paul L. Gendreau
  • Frank Vitaro
Article

Abstract

Background

Labelling cigarettes as “light” or “mild” is claimed to be one of the biggest marketing scams in Canadian history. Arguably, such labelling implies that these varieties of cigarettes are less harmful than “regular” cigarettes. In Canada, a food product can be labelled “light” if there is a 25% reduction from the “reference food” and if the constituent being reduced is clearly identified (e.g., light in fat). Cigarette labelling does not comply with these regulations, however. To examine whether or not some tobacco constituents meet the 25% reduction criterion, we compared yields of 41 toxic and/or carcinogenic smoke constituents in six varieties of “light” cigarettes to the yields of “regular” cigarettes. We selected cigarettes from the two most popular Canadian brands, Du Maurier and Players.

Methods

Using a set of data provided by Imperial Tobacco Canada and made available to the public by the Government of British Columbia, we compared yields measured under a laboratory protocol (modified ISO) that was designed to provide a more rigorous evaluation of the differences between varieties of cigarettes and a more accurate assessment of smokers’ potential smoke intake than the traditional protocol (standard ISO).

Findings

For all six varieties of “light” cigarettes, the yields of nicotine were higher by an average of 5% (range: 1% to 13%). The 25% reduction criterion was not met for any variety of “light” cigarettes concerning yields of tar. For all cigarettes tested, yields of tar were reduced on average by only 16% (range: 5% to 22%). For carbon monoxide (CO), only Player’s Smooth Light had an over 25% reduction (30%) compared with Player’s Regular. Conversely, yield of CO was 24% higher for Du Maurier Lights compared with Du Maurier Regular. As for the other smoke constituents, the majority (75%) were not reduced by 25% or more in “light” cigarettes, and a sizeable proportion of yields (e.g., acrylonitrile, benzene, chromium, m+p cresol, mercury, nickel, toluene) were larger in these varieties of cigarettes. Only yields of formaldehyde, crotonaldehyde, 1-aminonaphtalene, and proprionaldehyde were systematically reduced in all varieties of “light” cigarettes.

Conclusion

The six varieties of “light” cigarettes examined in this study do not differ substantially from “regular” cigarettes in terms of smoke yields. We argue that the modified ISO protocol should be implemented for a more valid comparison of potential smoke yields in all varieties of cigarettes and that labelling based on this protocol should be promoted.

MeSH terms

Tobacco smoking organic chemicals product labelling legislation light cigarettes 

Résmé

Contexte

L’utilisation de descriptifs comme « légères » ou « douces » sur les emballages de cigarettes serait l’une des plus grandes fumisteries de l’histoire du marketing au Canada. En effet, cet étiquetage donne à penser que ces variétés de cigarettes sont moins nocives pour la santé que les cigarettes « ordinaires ». Au Canada, un aliment peut être étiqueté comme étant « allégé » si on mentionne ce qui est réduit (p. ex., « allégé en matières grasses ») et si le produit est allégé d’au moins 25 % par rapport à l’aliment de référence. Ces règles ne sont cependant pas employées pour l’étiquetage des cigarettes. Afin de déterminer si certaines substances présentes dans la fumée de tabac sont réduites d’au moins 25 % dans les cigarettes « légères », nous avons comparé les niveaux d’émission de 41 constituants toxiques et/ou carcinogènes de six variétés de cigarettes « légères » avec les niveaux d’émission des cigarettes « ordinaires ». Pour ces comparaisons, nous avons choisi les deux marques canadiennes les plus populaires: Du Maurier et Player’s.

Méthode

Nous avons utilisé les données fournies par Imperial Tobacco Canada rendues publiques par le gouvernement de la Colombie-Britannique. Nous avons examiné les émissions des différents constituants, obtenues au moyen d’un protocole de laboratoire (norme ISO modifiée) qui, comparativement à la méthode classique (norme ISO standard), permet une évaluation plus juste de la quantité de fumée potentiellement inhalée par le fumeur.

Résultats

Les niveaux d’émission de nicotine sont plus élevés de 5 % en moyenne (entre 1 % et 13 %) dans les cigarettes « légères » que dans les cigarettes « ordinaires ». En ce qui concerne les niveaux d’émission de goudron, la réduction moyenne pour les différentes variétés de cigarettes « légères » est de 16 % seulement (entre 5 % et 22 %), et n’atteint en aucun cas le seuil de 25 %. Pour ce qui est des niveaux d’émission de monoxyde de carbone (CO), les cigarettes Player’s Légères Veloutées affichent une baisse de plus de 25 % (30 %), mais les cigarettes Du Maurier Légères ont quant à elles un taux d’émission de CO de 24 % supérieur à celui des Du Maurier Régulières. Quant aux autres constituants toxiques de la fumée de tabac, la plupart (75 %) des niveaux d’émission relevés pour les cigarettes « légères » n’atteignent pas le seuil de réduction de 25 %. De plus, les niveaux d’émission de plusieurs constituants (acrylonitrile, benzène, chromium, m+p crésol, mercure, nickel, toluène) sont substantiellement plus élevés dans les cigarettes « légères ». Seules les émissions de formaldéhyde, de crotonaldéhyde, de 1-aminonaphtalène et de proprionaldéhyde sont systématiquement réduites dans ces variétés de cigarettes.

Conclusion

Les cigarettes « légères » examinées dans la présente étude diffèrent peu des cigarettes « ordinaires ». À notre avis, il faudrait mettre en œuvre le protocole ISO modifié afin de fournir une comparaison plus juste des émissions toxiques des différentes variétés de cigarettes. Enfin, nous pensons que l’étiquetage devrait refléter les résultats comparatifs obtenus au moyen de ce protocole.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stratton K, Shetty P, Wallace R, Bondurant S. Clearing the Smoke: The Science Base for Tobacco Harm Reduction. Washington, DC: Institute of Medicine, 2001.Google Scholar
  2. 2.
    Pollay RW, Dewhirst T. The dark side of marketing seemingly “Light” cigarettes: Successful images and failed fact. Tobacco Control 2002;11(Suppl I):i18–31.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shopland DR. Historical perspective: The low tar lie. Tobacco Control 2001;10 (Suppl I):i1–3.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Pollay RW, Dewhirst T. Marketing cigarettes with low machine-measured yields. In: Risks Associated with Smoking Cigarettes with Low Machine-measured Yields of Tar and Nicotine. Smoking and Tobacco Control Monograph No. 13. Bethesda, MD: Department of Health and Human Services, National Cancer Institute, NIH Publication No. 02-5074, 2001;199235.Google Scholar
  5. 5.
    Health Canada. Canadian Tobacco Use Monitoring Survey, Annual, February–December 2002.Google Scholar
  6. 6.
    Ashley MJ, Cohen J, Ferrence R. ‘Light’ and ‘mild’ cigarettes: Who smokes them? Are they being misled? Can J Public Health 2001;92(6):407–11.PubMedGoogle Scholar
  7. 7.
    Canadian Council for Tobacco Control. Putting an End to Deception: Proceedings of the International Expert Panel on Cigarette Descriptors. A Report to the Canadian Minister of Health from the Ministerial Advisory Council on Tobacco Control, 2002.Google Scholar
  8. 8.
    Kozlowski LT, Goldberg ME, Yost BA, White EL, Sweeney CT, Pillitteri JL. Smokers are unaware of the filter vents now on most cigarettes: Results of a national survey. Tobacco Control 1996;5(4):265–70.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kozlowski LT, Mehta NY, Sweeney CT, Schwartz SS, Vogler GP, Jarvis MJ, West RJ. Filter ventilation and nicotine content of tobacco in cigarettes from Canada, the United Kingdom, and the United States. Tobacco Control 1998;7(4):369–75.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shiffman S, Pillitteri JL, Burton SL, Rohay JM, Gitchell JG. Smokers’ beliefs about “Light” and “Ultra Light” cigarettes. Tobacco Control 2001;10(Suppl I):i17–23.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Health Canada. Smoking in Canada: Perception, Attitudes, and Beliefs. Canadian Tobacco Use Monitoring Survey, Annual, February–December 2000.Google Scholar
  12. 12.
    Baker RR. Whose standard is it, anyway? Tobacco Control 2001;10(4):394.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bialous SA, Yach D. Whose standard is it, anyway? How the tobacco industry determines the International Organization for Standardization (ISO) standards for tobacco and tobacco products. Tobacco Control 2001;10(2):96–104.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kozlowski LT, O’Connor RJ, Sweeney CT. Cigarette design. In: Risks Associated with Smoking Cigarettes with Low Machine-measured Yields of Tar and Nicotine. Smoking and Tobacco Control Monograph No. 13. Bethesda, MD: Department of Health and Human Services, National Cancer Institute, NIH Publication No. 02-5074, 2001;1338.Google Scholar
  15. 15.
    Kozlowski LT, Pillitteri JL, Sweeney CT. Misuse of “light” cigarettes by means of vent blocking. J Subst Abuse 1994;6(3):333–36.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sweeney CT, Kozlowski LT, Parsa P. Effect of filter vent blocking on carbon monoxide exposure from selected lower tar cigarette brands. Pharmacol Biochem Behav 1999;63(1):167–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Kozlowski LT, O’Connor RJ. Cigarette filter ventilation is a defective design because of misleading taste, bigger puffs, and blocked vents. Tobacco Control 2002;11(Suppl I):I40–50.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoffmann D, Djordjevic MV, Brunnemann KD. Changes in cigarette design and composition over time and how they influence the yields of smoke constituents. In: The FTC Cigarette Test Method for Determining Tar, Nicotine & Carbon Monoxide Yields of U.S. Cigarettes. Report of the NCI Expert Committee. Smoking and Tobacco Control Monograph No.7. Bethesda, MD: Department of Health and Human Services, National Cancer Institute, NIH Publication No. 96-4028, 1996;1537.Google Scholar
  19. 19.
    Kozlowski LT, Henningfield JE, Brigham J. Cigarettes, Nicotine, and Health: A Behavioral Approach. Thousand Oaks, CA: Sage Publications, 2000.Google Scholar
  20. 20.
    Canadian Food Inspection Agency. Guide to food labelling and advertising. February, 2004. URL https://doi.org/www.inspection.gc.ca(Accessed February 8, 2004).Google Scholar
  21. 21.
    Physicians for a Smoke-free Canada. Cigarette brands sold in Canada, 2003. November, 2004. URL: https://doi.org/www.smoke-free.ca/factsheets/pdf/brands.pdf (Accessed November 17, 2004).Google Scholar
  22. 22.
    Government of British Columbia. Tobacco Sales Act, Tobacco Testing and Disclosure Regulation. June, 2003. URL: https://doi.org/www.qp.gov.bc.ca/statreg/reg/T/TobaccoSales/282_98.htm (Accessed July 17, 2003).Google Scholar
  23. 23.
    Government of British Columbia. What is in cigarettes? July, 2003. URL: https://doi.org/www.healthplanning.gov.bc.ca/ttdr/index.html (Accessed July 17, 2003).Google Scholar
  24. 24.
    Guerin MR. Sensitivity of the Federal Trade Commission test method to analytical parameters. In: The FTC Cigarette Test Method for Determining Tar, Nicotine & Carbon Monoxide Yields of U.S. Cigarettes. Report of the NCI Expert Committee. Smoking and Tobacco Control Monograph No.7. Bethesda, MD: Department of Health and Human Services, National Cancer Institute, NIH Publication No. 96-4028, 1996;13550.Google Scholar
  25. 25.
    Kozlowski LT, Frecker FC, Khouw V, Pope MS. The misuse of “less-hazardous” cigarettes and its detection: Hole-blocking of ventilated filters. Am J Public Health 1980;70(11):1202–3.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rickert WS, Robinson JC, Young JC, Collishaw NE, Bray DF. A comparison of the yields of tar, nicotine, and carbon monoxide of 36 brands of Canadian cigarettes tested under three conditions. Prev Med 1983;12(5):682–94.CrossRefPubMedGoogle Scholar
  27. 27.
    Burns DM, Major JM, Shanks TG, Thun MJ, Samet JM. Smoking lower yield cigarettes and disease risks. In: Risks Associated with Smoking Cigarettes with Low Machine-measured Yields of Tar and Nicotine. Smoking and Tobacco Control Monograph No. 13. Bethesda, MD: Department of Health and Human Services, National Cancer Institute, NIH Publication No. 02-5074, 2001;65158.Google Scholar
  28. 28.
    Thun MJ, Burns DM. Health impact of “reduced yield” cigarettes: A critical assessment of the epidemiological evidence. Tobacco Control 2001;10(Suppl I):i4–11.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Etter JF, Kozlowski LT, Perneger TV. What smokers believe about light and ultralight cigarettes. Prev Med 2003;36(1):92–98.CrossRefPubMedGoogle Scholar
  30. 30.
    Warner KE. Reducing harm to smokers: Methods, their effectiveness, and the role policy. In: Rabin RL, Sugarman SD (Eds.), Regulating Tobacco. New York, NY: Oxford University Press, 2001;11142.Google Scholar
  31. 31.
    U.S. Food and Drug Administration. Center for food safety and applied nutrition. A food labeling guide. October, 2004. https://doi.org/www.cfsan.fda.gov/~dms/flg-6a.html (Accessed October 8, 2004).Google Scholar
  32. 32.
    Physicians for a Smoke-Free Canada. Whatever happened to the ban on “light” and “mild”? Report to members. June, 2004. https://doi.org/www.smoke-free.ca/pdf_1/spring2004.pdf (Accessed June 4, 2004).Google Scholar
  33. 33.
    Bates C, McNeill A, Jarvis MJ, Gray N. The future of tobacco product regulation and labelling in Europe: Implications for the forthcoming European Union directive. Tobacco Control 1999;8(2):225–35.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Canadian Public Health Association 2005

Authors and Affiliations

  1. 1.School of PsychoeducationUniversity of MontrealMontrealCanada

Personalised recommendations