Molecular Medicine

, Volume 9, Issue 9–12, pp 209–219 | Cite as

In Silico Prediction of Peptides Binding to Multiple HLA-DR Molecules Accurately Identifies Immunodominant Epitopes from gp43 of Paracoccidioides brasiliensis Frequently Recognized in Primary Peripheral Blood Mononuclear Cell Responses from Sensitized Individuals

  • Leo Kei Iwai
  • Márcia Yoshida
  • John Sidney
  • Maria Aparecida Shikanai-Yasuda
  • Anna Carla Goldberg
  • Maria Aparecida Juliano
  • Jurgen Hammer
  • Luiz Juliano
  • Alessandro Sette
  • Jorge Kalil
  • Luiz Rodolpho Travassos
  • Edecio Cunha-Neto


One of the major drawbacks limiting the use of synthetic peptide vaccines in genetically distinct populations is the fact that different epitopes are recognized by T cells from individuals displaying distinct major histocompatibility complex molecules. Immunization of mice with peptide (181–195) from the immunodominant 43 kDa glycoprotein of Paracoccidioides brasiliensis (gp43), the causative agent of Paracoccidioidomycosis (PCM), conferred protection against infectious challenge by the fungus. To identify immunodominant and potentially protective human T-cell epitopes in gp43, we used the TEPITOPE algorithm to select peptide sequences that would most likely bind multiple HLA-DR molecules and tested their recognition by T cells from sensitized individuals. The 5 most promiscuous peptides were selected from the gp43 sequence and the actual promiscuity of HLA binding was assessed by direct binding assays to 9 prevalent HLA-DR molecules. Synthetic peptides were tested in proliferation assays with peripheral blood mononuclear cells (PBMC) from PCM patients after chemotherapy and healthy controls. PBMC from 14 of 19 patients recognized at least one of the promiscuous peptides, whereas none of the healthy controls recognized the gp43 promiscuous peptides. Peptide gp43(180–194) was recognized by 53% of patients, whereas the other promiscuous gp43 peptides were recognized by 32% to 47% of patients. The frequency of peptide binding and peptide recognition correlated with the promiscuity of HLA-DR binding, as determined by TEPITOPE analysis. In silico prediction of promiscuous epitopes led to the identification of naturally immunodominant epitopes recognized by PBMC from a significant proportion of a genetically heterogeneous patient population exposed to P. brasiliensis. The combination of several such epitopes may increase the frequency of positive responses and allow the immunization of genetically distinct populations.



We would like to thank Dr Maria Lúcia Marin who helped us with determining the HLA of patients, Dr Simone Gonçalves da Fonseca and Renata Cristina Ferreira who helped with FACS acquisition, and Washington Robert da Silva for technical assistance. This study was supported by grant 00-08404-3 and LKI was supported by fellowship grant 99/15319-6 from São Paulo State Science Funding Agency (FAPESP). ECN is the recipient of productivity grant 520533/97-6 from the Brazilian National Research Council (CNPq). AS and JS are supported by National Institutes of Health contracts N01-AI-95362 and HHSN266200400006C.


  1. 1.
    Muller GM, Shapira M, Arnon R. (1982) Anti-influenza response achieved by immunization with a synthetic conjugate. Proc. Natl. Acad. Sci. U.S.A. 79:569–73.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Taborda CP, Juliano MA, Puccia R, Franco M, Travassos LR. (1998) Mapping of the T-cell epitope in the major 43-kilodalton glycoprotein of Paracoccidioides brasiliensis which induces a Th-1 response protective against fungal infection in BALB/c mice. Infect. Immun. 66:786–93.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Smith DJ, King WF, Barnes LA, Peacock Z, Taubman MA. (2003) Immunogenicity and protective immunity induced by synthetic peptides associated with putative immunodominant regions of Streptococcus mutans glucan-binding protein B. Infect. Immun. 71:1179–84.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Southwood S et al. (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 160:3363–73.PubMedGoogle Scholar
  5. 5.
    Hunziker IP et al. (2001) Perspectives: toward a peptide-based vaccine against hepatitis C virus. Mol. Immunol. 38:475–84.CrossRefGoogle Scholar
  6. 6.
    Tsuji M, Zavala F. (2001) Peptide-based subunit vaccines against pre-erythrocytic stages of malaria parasites. Mol. Immunol. 38:433–42.CrossRefGoogle Scholar
  7. 7.
    Ertl HC, Xiang Z. (1996) Novel vaccine approaches. J. Immunol. 156:3579–82.PubMedGoogle Scholar
  8. 8.
    DiMarchi R, Brooke G, Gale C, Cracknell V, Doel T, Mowat N. (1986) Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232:639–41.CrossRefGoogle Scholar
  9. 9.
    Casal JI et al. (1995) Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence. J. Virol. 69:7274–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Taboga O et al. (1997) A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J. Virol. 71:2606–14.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Nargi F et al. (1999) Protection of swine from foot-and-mouth disease with one dose of an all-D retro peptide. Vaccine 17:2888–93.CrossRefGoogle Scholar
  12. 12.
    Van Regenmortel MH, Guichard G, Benkirane N, Briand JP, Muller S, Brown F. (1998) The potential of retro-inverso peptides as synthetic vaccines. Dev. Biol. Stand. 92:139–43.PubMedGoogle Scholar
  13. 13.
    Dong XN, Wei K, Liu ZQ, Chen YH. (2002) Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine 21:167–73.CrossRefGoogle Scholar
  14. 14.
    Sidney J, Southwood S, Oseroff C, del Guercio MF, Sette A, Grey HM. (1998) The measurement of MHC/peptide interactions by gel infiltration. Curr. Protocols Immunol. 18.3.1–18.3.19.Google Scholar
  15. 15.
    Patarroyo ME et al. (1988) A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 332:158–61.CrossRefGoogle Scholar
  16. 16.
    Smith JW et al. (2003). Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J. Clin. Oncol. 21:1562–73.CrossRefGoogle Scholar
  17. 17.
    Hammer J, Sturniolo T, Sinigaglia F. (1997) HLA class II peptide binding specificity and autoimmunity. Adv. Immunol. 66:67–100.CrossRefGoogle Scholar
  18. 18.
    Sturniolo T et al. (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17:555–61.CrossRefGoogle Scholar
  19. 19.
    Cunha-Neto E. (1999) MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans. Braz. J. Med. Biol. Res. 32:199–205.CrossRefGoogle Scholar
  20. 20.
    Rammensee HG. (1995) Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol. 7:85–96.CrossRefGoogle Scholar
  21. 21.
    Rammensee HG, Friede T, Stevanoviic S. (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228.CrossRefGoogle Scholar
  22. 22.
    Meister GE, Roberts CG, Berzofsky JA, De Groot AS. (1995) Two novel T-cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine 13:581–91.CrossRefGoogle Scholar
  23. 23.
    Bian H, Reidhaar-Olson JF, Hammer J. (2003) The use of bioinformatics for identifying class II-restricted T-cell epitopes. Methods 29:299–309.CrossRefGoogle Scholar
  24. 24.
    Schroers R, Huang XF, Hammer J, Zhang J, Chen SY. (2002) Identification of HLA DR7-restricted epitopes from human telomerase reverse transcriptase recognized by CD4+ T-helper cells. Cancer Res. 62:2600–5.PubMedGoogle Scholar
  25. 25.
    de Lalla C, Sturniolo T, Abbruzzese L, Hammer J, Sidoli A, Sinigaglia F, Panina-Bordignon P. (1999) Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J. Immunol. 163:1725–9.PubMedGoogle Scholar
  26. 26.
    Stassar MJ, Raddrizzani L, Hammer J, Zoller M. (2001) T-helper cell-response to MHC class II-binding peptides of the renal cell carcinoma-associated antigen RAGE-1. Immunobiology 203:743–55.CrossRefGoogle Scholar
  27. 27.
    Cochlovius B, Stassar M, Christ O, Raddrizzani L, Hammer J, Mytilineos I, Zoller M. (2000) In vitro and in vivo induction of a Th cell response toward peptides of the melanoma-associated glycoprotein 100 protein selected by the TEPITOPE program. J. Immunol. 165:4731–41.CrossRefGoogle Scholar
  28. 28.
    Manici S et al. (1999) Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J. Exp. Med. 189:871–6.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Consogno G et al. (2003) Identification of immunodominant regions among promiscuous HLA-DR-restricted CD4+ T-cell epitopes on the tumor antigen MAGE-3. Blood 101:1038–44.CrossRefGoogle Scholar
  30. 30.
    Panigada M et al. (2002) Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect. Immun. 70:79–85.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kruger S, Schroers R, Rooney CM, Gahn B, Chen SY. (2003) Identification of a naturally processed HLA-DR-restricted T-helper epitope in Epstein-Barr virus nuclear antigen type 1. J. Immunother. 26:212–21.CrossRefGoogle Scholar
  32. 32.
    Shen L, Schroers R, Hammer J, Huang XF, Chen SY. (2003) Identification of a MHC class-II restricted epitope in carcinoembryonic antigen [online]. Cancer Immunol. Immunother. 18.Google Scholar
  33. 33.
    Schroers R et al. (2003) Identification of MHC class II-restricted T-cell epitopes in prostate-specific membrane antigen. Clin. Cancer Res. 9:3260–71.PubMedGoogle Scholar
  34. 34.
    BenMohamed L et al. (2003) Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J. Virol. 77:9463–73.CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Campi G et al. (2003) CD4(+) T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res. 63:8481–6.PubMedGoogle Scholar
  36. 36.
    Brummer E, Castaneda E, Restrepo A. (1993) Paracoccidioidomycosis: an update. Clin. Microbiol. Rev. 6:89–117.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Shikanai-Yasuda MA. (1996) Paracoccioidomycosis. In: Oxford Textbook of Medicine. Weatherall DJ, Ledinghan JGG, Warrell DA (eds.) Oxford Medical Publications, Oxford University Press, Oxford, UK. pp. 814–24.Google Scholar
  38. 38.
    Restrepo A, McEwen JG, Castaneda E. (2001) The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med. Mycol. 39:233–41.CrossRefGoogle Scholar
  39. 39.
    Mota NG et al. (1985) Correlation between cell-mediated immunity and clinical forms of paracoccidioidomycosis. Trans. R. Soc. Trop. Med. Hyg. 79:765–772.CrossRefGoogle Scholar
  40. 40.
    Calich VL, Singer-Vermes LM, Russo M, Vaz CA, Burger E. (1994) Immunogenetics in Paracoccidioidomycosis. In: Paracoccidioidomycosis. Franco M, Lacaz CS, Restrepo A, and Del Negro GM (eds.) CRC Press, Boca Raton, FL. pp. 151–73.Google Scholar
  41. 41.
    Biagioni L, Souza MJ, Chamma LG, Mendes RP, Marques SA, Mota NG, Franco M. (1984) Serology of paracoccidioidomycosis. II. Correlation between class-specific antibodies and clinical forms of the disease. Trans. R. Soc. Trop. Med. Hyg. 78:617–21.CrossRefGoogle Scholar
  42. 42.
    Camargo ZP, Unterkircher C, Travassos LR. (1989) Identification of antigenic polypeptides of Paracoccidioides brasiliensis by immunoblotting. J. Med. Vet. Mycol. 27:407–12.CrossRefGoogle Scholar
  43. 43.
    Benard G, Mendes-Giannini MJ, Juvenale M, Miranda ET, Duarte AJ. (1997) Immunosuppression in paracoccidioidomycosis: T-cell hyporesponsiveness to two Paracoccidioides brasiliensis glycoproteins that elicit strong humoral immune response. J. Infect. Dis. 175:1263–7.CrossRefGoogle Scholar
  44. 44.
    DelNegro GM et al. (2000) Evaluation of tests for antibody response in the follow-up of patients with acute and chronic forms of paracoccidioidomycosis. J. Med. Microbiol. 49:37–46.Google Scholar
  45. 45.
    Souza AR et al. (2000) Anti-idiotypic antibodies in patients with different clinical forms of paracoccidioidomycosis. Clin. Diagn. Lab. Immunol. 7:175–81.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Puccia R, Schenkman S, Gorin PA, Travassos LR. (1986) Exocellular components of Paracoccidioides brasiliensis: identification of a specific antigen. Infect. Immun. 53:199–206.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Puccia R, Travassos LR. (1991) 43-kilodalton glycoprotein from Paracoccidioides brasiliensis: immunochemical reactions with sera from patients with paracoccidioidomycosis, histoplasmosis, or Jorge Lobo’s disease. J. Clin. Microbiol. 29:1610–5.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Travassos LR, Taborda CP, Iwai LK, Cunha-Neto E, Puccia R. (2004) The gp43 from Paracoccidioides brasiliensis: A major diagnostic antigen and vaccine candidate. In: The Mycota XII. Human Fungal Pathogens. Domer JE, Kobayashi GS (eds.) Springer-Verlag, Berlin-Heidelberg, pp. 279–96.CrossRefGoogle Scholar
  49. 49.
    De Camargo Z, Unterkircher C, Campoy SP, Travassos LR. (1988) Production of Paracoccidioides brasiliensis exoantigens for immunodiffusion tests. J. Clin. Microbiol. 26:2147–51.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Taborda CP, Camargo ZP. (1993) Diagnosis of paracoccidioidomycosis by passive haemagglutination assay of antibody using a purified and specific antigen-gp43. J. Med. Vet. Mycol. 31:155–60.CrossRefGoogle Scholar
  51. 51.
    Saraiva EC, Altemani A, Franco MF, Unterkircher CS, Camargo ZP. (1996) Paracoccidioides brasiliensis-gp43 used as paracoccidioidin. J. Med. Vet. Mycol. 34:155–61.CrossRefGoogle Scholar
  52. 52.
    Geginat J, Lanzavecchia A, Sallusto F. (2003) Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 100(11):4260–6.CrossRefGoogle Scholar
  53. 53.
    Hammer J et al. (1994) High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proc. Natl. Acad. Sci. U. S. A. 91:4456–60.CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Atherton E, Sheppard RC. (1989) Solid Phase Peptide Synthesis: A Practical Approach. IRL Press, Oxford, UK. 152 p.Google Scholar
  55. 55.
    King DS, Fields CG, Fields GB. (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int. J. Pept. Protein Res. 36:255–66.CrossRefGoogle Scholar
  56. 56.
    Crevat D, Kalil J, Rosa F, Fellous M. (1983) Presence of 2 different epitopes on the human beta 2-microglobulin defined by monoclonal antibodies. Ann. Immunol. (Paris) 134C:31–41.Google Scholar
  57. 57.
    Kalil J, Crevat D, Fellous M, Drouet J, Courouce AM, Ropars C. (1981) Production of monoclonal antibodies against HBs. Ann. Immunol. (Paris) 132C:319–26.Google Scholar
  58. 58.
    Guilherme L et al. (2001). T-cell reactivity against streptococcal antigens in the periphery mirrors reactivity of heart-infiltrating T lymphocytes in rheumatic heart disease patients. Infect. Immun. 69:5345–51.CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P. (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11:298–300, 302.PubMedGoogle Scholar
  60. 60.
    Bignon JD, Fernandez-Vina MA. (1997) Protocols of the 12th International Histocompatibility Workshop for typing of HLA class II alleles by DNA amplification by the polymerase chain reaction (PCR) and hybridation with sequence specific oligonucleotide probes (SSOP). In: Genetic Diversity of HLA Functional and Medical Implication. Fauchet R, Charron D (eds.) Paris, France, EDK Medical and Scientific International Publisher, pp. 584–95.Google Scholar
  61. 61.
    Olerup O, Zetterquist H. (1992) HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39:225–35.CrossRefGoogle Scholar
  62. 62.
    Goldberg AC, Marin ML, Chiarella J, Rosales C, Kalil J. (1997) Brazil normal. In: HLA 1997. Gjertson DW, Terasaki PI (eds.) UCLA Tissue Typing Laboratory, American Society for Histocompatibility and Immunogenetics, Los Angeles, CA. 330 pp.Google Scholar
  63. 63.
    Hammer J (1995) New methods to predict MHC-binding sequences within protein antigens. Curr. Opin. Immunol. 7:263–9.CrossRefGoogle Scholar
  64. 64.
    Sinigaglia F, Romagnoli P, Guttinger M, Takacs B, Pink JR (1991) Selection of T-cell epitopes and vaccine engineering. Methods Enzymol. 203:370–86.CrossRefGoogle Scholar
  65. 65.
    Meloen RH, Langeveld JP, Schaaper WM, Slootstra JW. (2001) Synthetic peptide vaccines: unexpected fulfillment of discarded hope? Biologicals 29:233–6.CrossRefGoogle Scholar
  66. 66.
    Alexander J et al. (2002) A decaepitope polypeptide primes for multiple CD8+ IFN-gamma and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery. J. Immunol. 168:6189–98.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2003

Authors and Affiliations

  • Leo Kei Iwai
    • 1
    • 3
    • 5
  • Márcia Yoshida
    • 4
  • John Sidney
    • 8
  • Maria Aparecida Shikanai-Yasuda
    • 4
  • Anna Carla Goldberg
    • 1
    • 3
  • Maria Aparecida Juliano
    • 5
  • Jurgen Hammer
    • 7
  • Luiz Juliano
    • 5
  • Alessandro Sette
    • 8
  • Jorge Kalil
    • 1
    • 2
    • 3
  • Luiz Rodolpho Travassos
    • 6
  • Edecio Cunha-Neto
    • 1
    • 2
    • 3
  1. 1.Laboratory of Immunology-Heart Institute (Incor), Division of Clinical Immunology and Allergy, Department of MedicineUniversity of São Paulo Medical SchoolSão Paulo, SPBrazil
  2. 2.Division of Clinical Immunology and AllergyMillenium InstitutesSão PauloBrazil
  3. 3.Institute for Investigation in ImmunologyMillenium InstitutesSão PauloBrazil
  4. 4.Department of Infectious and Parasitic DiseasesUniversity of São Paulo Medical SchoolSão PauloBrazil
  5. 5.Department of BiophysicsFederal University of São Paulo, UNIFESPSão PauloBrazil
  6. 6.Discipline of Cell Biology, Department of Microbiology, Immunology and ParasitologyFederal University of São Paulo, UNIFESPSão PauloBrazil
  7. 7.Department of Genomic and Information SciencesHoffmann-La Roche IncNutleyUSA
  8. 8.La Jolla Institute for Allergy and ImmunologySan DiegoUSA

Personalised recommendations