Advertisement

Hormones

, Volume 11, Issue 1, pp 21–30 | Cite as

Pathogenesis of vascular complications in Cushing’s syndrome

  • Predrag Miljic
  • Dragana Miljic
  • Joshua William Cain
  • Márta Korbonits
  • Vera Popovic
Review

Abstract

Chronic exposure to high glucocorticoid levels in Cushing’s syndrome (CS) is often associated with alterations in the hemostatic system and the expression of prothrombotic phenotypes. Increased frequency of both atherothrombotic and venous thromboembolic events (VTE) has been reported in patients with CS. In general, cardiovascular complications in these patients cause a five-fold increase in mortality compared to the normal population. Although numerous abnormalities in the hemostatic system have been detected in patients with CS, the underlying mechanisms of the prothrombotic state are not fully elucidated. High levels of factor VIII and von Willebrand factor, with evidence of enhanced thrombin generation and decreased fibrinolytic activity, have been documented in several studies. However, it is not clear to what extent these changes contribute to the shift of hemostatic balance towards the hypercoagulable state and expression of thrombophilic phenotypes. Thrombosis is usually a multicausal disease, and all three components of the so-called Virchow triad, namely 1) vascular abnormalities and endothelial dysfunction, 2) hypercoagulability and 3) stasis, may play a variable role in the pathogenesis of the prothrombotic state in CS patients. Larger studies are needed to establish strategies for prevention of cardiovascular complications in patients with Cushing’s syndrome.

Key words

Cushing’s syndrome Hypercoagulability Vascular complications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnaldi G, Agneli A, Atkinson AB et al, 2003 Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 88: 5593–5602.CrossRefGoogle Scholar
  2. 2.
    Extabe J, Vasquez JA, 1994 Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol 40: 479–484.CrossRefGoogle Scholar
  3. 3.
    Lindholm J, Juul S, Jørgensen JOL, et al, 2001 Incidence and late prognosis of Cushing’s syndrome: a population based study. J Clin Endocrinol Metab 86: 117–123.PubMedGoogle Scholar
  4. 4.
    Daly AF, Rixhon AF, Adam C, et al, 2006 High prevalence of pituitary adenomas: a cross sectional study in the province of Liège, Belgium. J Clin Endocrinol Metab 91: 4769–4775.CrossRefGoogle Scholar
  5. 5.
    Fernandez A, Karavitaki N, Wass JA, 2010 Prevalence of pituitary adenomas: a community based study in Banbary (Oxfordshire, UK). Clin Endocrinol 72: 377–382.CrossRefGoogle Scholar
  6. 6.
    Dekkers OM, Biermasz NR, Pereira AM et al, 2007 Mortality in patients treated for Cushing’s disease is increased compared with patients treated for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 92: 976–981.CrossRefGoogle Scholar
  7. 7.
    Colao A, Pivonello R, Spiezia S, et al, 1999 Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84: 2664–2672.PubMedGoogle Scholar
  8. 8.
    Clayton RN, Raskauskiene D, Reulen RC, Jones PW, 2011 Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK. J Clin Endocrinol Metab 96: 632–42.CrossRefGoogle Scholar
  9. 9.
    Bolland MJ, Holdaway IM, Berkeley JE, et al, 2011 Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin Endocrinol 75: 436–442.CrossRefGoogle Scholar
  10. 10.
    Webb SM, Mo D, Lamberts SW, et al, 2010 Metabolic, cardiovascular and cerebrovascular outcomes in growth hormone deficient subjects with previous Cushing’s disease or nonfunctioning pituitary adenoma. J Clin Endocrinol Metab 95: 630–638.CrossRefGoogle Scholar
  11. 11.
    Barahona MJ, Sucunza N, Resmini E, et al, 2009 Persistent body fat mass and inflammatory marker increases after long-term cure of Cushing’s syndrome. J Clin Endocrinol Metab 94: 3365–71.CrossRefGoogle Scholar
  12. 12.
    Bilchert-Toft M, Bagerskov A, Lockwood K, Hasner E, 1972 Operative treatment, surgical approach and related complications in 195 operations upon the adrenal glands. Surg Gynecol Obstet 135: 261–266.Google Scholar
  13. 13.
    Delaney JP, Solomkin JS, Jacobson ME, Doe RP, 1978 Surgical management of Cushing’s syndrome. Surgery 84: 465–470.PubMedGoogle Scholar
  14. 14.
    Pezzulich RA, Mannix Jr H, 1970 Immediate complications of adrenal surgery. Ann Surg 172: 125–130.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Sjöberg HE, Blombäck M, Granberg PO, 1976 Thromboembolic complications, heparin treatment in increase in coagulation factors in Cushing’s syndrome. Acta Med Scand 199: 95–98.CrossRefGoogle Scholar
  16. 16.
    Small M, Lowe GD, Forbes CD, Thomson JA, 1983 Thromboembolic complications in Cushing’s syndrome. Clin Endocrinol 19: 503–511.CrossRefGoogle Scholar
  17. 17.
    Semple PL, Lews ER Jr, 1999 Complications in contemporary series of patients who underwent transphenoidal surgery for Cushing’s disease. J Neurosurg 91: 175–179.CrossRefGoogle Scholar
  18. 18.
    Sirén J, Haglund C, Haapiainen R, 2000 An institutional experience with 40 first lateral transperitoneal laparoscopic adrenalectomies. Surg Laparosc Endosc Percutan Tech 10: 382–386.CrossRefGoogle Scholar
  19. 19.
    Rees DA, Hanna FW, Davies JS, Mills RG, Vafidis J, Scanlon MF, 2002 Long-term follow-up results of transsphenoidal surgery for Cushing’s disease in a single center using strict criteria for remission. Clin Endocrinol 56: 541–551.CrossRefGoogle Scholar
  20. 20.
    Boscaro M, Sonino N, Scarda A, et al, 2002 Anticoagulant prophylaxis markedly reduces thromboembolic complications in Cushing’s syndrome. J Clin Endocrinol Metab 87: 3662–3666.PubMedGoogle Scholar
  21. 21.
    Sudhakar N, Ray A, Vafidis JA, et al, 2004 Complications after trans-sphenoidal surgery: our experience and review of the literature. Br J Neurosurg 18: 507–512.CrossRefGoogle Scholar
  22. 22.
    Zografos GN, Markou A, Ageli C, et al, 2006 Laparoscopic surgery for adrenal tumors. A retrospective analysis. Hormones (Athens) 5: 52–56.CrossRefGoogle Scholar
  23. 23.
    Van Zaane B, Nur E, Squizzato A, et al, 2009 Hypercoagulable state in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab 94: 2743–2751.CrossRefGoogle Scholar
  24. 24.
    Manetti L, Bogazzi F, Govanetti C, et al, 2010 Changes in coagulation indexes and occurrence of venous thromboembolism in patients with Cushing’s syndrome: results from a prospective study before and after surgery. Eur J Endocrinol 163: 783–791.CrossRefGoogle Scholar
  25. 25.
    Stuijver DJF, van Zaane B, Feelders RA, et al, 2011 Incidence of venous thromboembolism in patients with Cushing’s syndrome: a multicenter cohort study. J Clin Endocrinol Metab 96: 3525–3532.CrossRefGoogle Scholar
  26. 26.
    Geerts WH, Bergqvist D, Pineo GF, et al, 2008 Prevention of venous thromboembolis. American College of Chest Physicians Evidence-based clinical practice guidelines. 8th ed Chest 133: 3815–4535.Google Scholar
  27. 27.
    Virchow R, 1856. Gessamalte Abhandlungen zur wissenschaftlichen Medizin. Medinger Sohn, Frankfurt, Germany; pp, 219–732.Google Scholar
  28. 28.
    Viles-Gonzales FJ, Fuster V, Badimon JJ, 2004 Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J 25: 1197–1207.CrossRefGoogle Scholar
  29. 29.
    Muiesan ML, Lupia M, Salvetti M, et al, 2003 Left ventricular and functional characteristics in Cushing’s syndrome. J American College Cardiol 41: 2275–2279.CrossRefGoogle Scholar
  30. 30.
    Rizzoni D, Porteri E, De Ciuceis C, et al, 2009 Hyperthrophic remodeling of subcutaneous small resistance arteries in patients with Cushing’s syndrome. J Clin Endocrinol Metab 94: 5010–5018.CrossRefGoogle Scholar
  31. 31.
    Duprez DA, 2006 Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens 24: 983–991.CrossRefGoogle Scholar
  32. 32.
    Pallone TL, 2005 Microvascular effects of aldosterone and angiotensin type 2 receptors. Hypertension 45: 845–846.CrossRefGoogle Scholar
  33. 33.
    Molnar GA, Lindschau C, Dubrovska G, et al, 2008 Glucocorticoid-related signaling effects in vascular smooth muscle cells. Hypertension 51: 1372–1378.CrossRefGoogle Scholar
  34. 34.
    Faggiano A, Pivonello R, Spiezia S, et al, 2003 Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease remission. J Clin Endocrinol Metab 88: 2527–2533.CrossRefGoogle Scholar
  35. 35.
    Albiger N, Testa RM, Almoto B, et al, 2006 Patients with Cushing’s syndrome have increased intimal media thickness at different vascular levels: comparison with a population matched for similar cardiovascular risk factors. Horm Metab Res 38: 405–410.CrossRefGoogle Scholar
  36. 36.
    De Leo M, Pivonello R, Auriemma RS, et al, 2010 Cardiovascular disease in Cushing’s syndrome: heart versus vasculature. Neuroendocrinology 92: Suppl 1: 50–54.CrossRefGoogle Scholar
  37. 37.
    Baykan M, Erem C, Gedikli O, et al, 2007 Impairment of flow-mediated vasodilatation of brachial artery in patients with Cushing’s syndrome. Endocrine 31: 300–304.CrossRefGoogle Scholar
  38. 38.
    Terzolo M, Allesino B, Bosio S, et al, 2004 Hyperhomocystinemia in patients with Cushing’s syndrome. J Clin Endocrinol Metab 89: 3745–3751.CrossRefGoogle Scholar
  39. 39.
    Ermetici F, Malavazos AE, Corbetta S, et al, 2008 Soluble adhesion molecule levels in patients with Cushing’s syndrome before and after cure. J Endocrinol Invest 31: 389–392.CrossRefGoogle Scholar
  40. 40.
    Kristo C, Ueland T, Godanog K, Aukrust P, Bollerslev J, 2008 Biochemical markers for cardiovascular risk following treatment in endogenous Cushing’s syndrome. J Endocrinol Invest 31: 400–405.CrossRefGoogle Scholar
  41. 41.
    Dal Bo Zanon R, Fornasiero L, Boscaro M, Vappellato G, Fabris F, Girolami A, 1982 Increased factor VIII associated activities in Cushing’s syndrome: a probable hypercoagulable state. Thromb Hemost 47: 116–117.CrossRefGoogle Scholar
  42. 42.
    Kastelan D, Dusek T, Kraljevic I, et al, 2009 Hypercoagulability in Cushing’s syndrome: the role of specific hemostatic and fibrinolytic markers. Endocr 36: 70–74.CrossRefGoogle Scholar
  43. 43.
    Erem C, Nuhoglu I, Yilmaz M, et al, 2009 Blood coagulation and fibrinolysis in patients with Cushing’s syndrome: increased plasminogen activator inhibitor-1, decreased tissue factor pathway inhibitor and unchanged thrombin-activatable fibrinolysis inhibitor levels. J Endocrinol Invest 32: 169–174.CrossRefGoogle Scholar
  44. 44.
    Ambrosi B, Sartorio A, Pizzocaro A, Passini E, Bottasso B, Federici A, 2000 Evaluation of haemostatic and fibrinolytic markers in patients with Cushing’s syndrome and in patients with adrenal incidentaloma. Exp Clin Endocrinol Diab 108: 294–298.CrossRefGoogle Scholar
  45. 45.
    Brotman DJ, Girod JP, Posh A, et al, 2006 Effects of short term glucocorticoids on haemostatic factors in healthy volunteers. Thromb Res 118: 247–252.CrossRefGoogle Scholar
  46. 46.
    Ikkala E, Myllyla G, Pelkonen R, Rasi V, Viinikka L, Ylikorkala O, 1985 Hemostatic parameters in Cushing’s syndrome. Acta Med Scand 217: 507–511.CrossRefGoogle Scholar
  47. 47.
    Jilma B, Cvitko T, Winter-Fabry A, Petroczi K, Quehenberger P, Blann AD, 2005 High dose dexamethasone increases circulating P-selectin and von Willebrand factor levels in healthy men. Thromb Hemost 94: 797–801.Google Scholar
  48. 48.
    Varughese GI, Patel JV, Tomson J, Blann AD, Hughes EA, Lip GY, 2007 Prognostic value of plasma soluble P-selectin and von Willebrand factor as indices of platelet activation and endothelial damage/dysfunction in high risk patients with hypertension: a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial. J Intern Med 261: 384–391.CrossRefGoogle Scholar
  49. 49.
    Fatti LM, Bottasso B, Invitti C, Coppola R, Cavanigni F, Mannucci PM, 2000 Markers of activation of coagulation and fibrinolysis in patients with Cushing’s syndrome. J Endocrinol Invest 23: 145–150.CrossRefGoogle Scholar
  50. 50.
    Casonato A, Pontara E, Boscaro M, et al, 1999 Abnormalities in von Willebrand factor are also part of the prothrombotic state of Cushing’s syndrome. Blood Coagul Fibrinolysis 10: 145–151.CrossRefGoogle Scholar
  51. 51.
    Patrassi GM, Dal Bo Zanon R, Boscaro M, Martinelli S, Girolami A, 1985 Further studies on the hypercoagu-lable state of patients with Cushing’s syndrome. Thromb Hemost 54: 518–520.Google Scholar
  52. 52.
    Casonato A, Daidone V, Sartorello F, et al, 2008 Polymorphisms in von Willebrand factor gene promoter influence the glucocorticoid-induced increase in von Willebrand factor: lesson learned from Cushing’s syndrome. Br J Hematol 140: 230–236.CrossRefGoogle Scholar
  53. 53.
    Kerachian MA, Cournoyer D, Harvey EJ, et al, 2009 Effects of high-dose dexamethasone on endothelial haemostatic gene expression and neutrophil adhesion. J Steroid Biochem Mol Biol 116: 127–133.CrossRefGoogle Scholar
  54. 54.
    Trementino L, Arnaldi G, Appolloni G, et al, 2010 Coagulopathy in Cushing’s syndrome. Neuroendocrinology 92: Suppl 1: 55–59.CrossRefGoogle Scholar
  55. 55.
    Merriman L, Greaves M, 2006 Testing for thrombophilia: an evidence-based approach. Postgrad Med J 82: 699–704.CrossRefGoogle Scholar
  56. 56.
    Patrassi GM, Sartori MT, Viero ML, Scarano L, Boscaro M, Girolami A, 1992 The fibrinolytic potential in patients with Cushing’s disease: a clue to their hypercoagulable state. Blood Coagul Fibrinolysis 3: 789–793.CrossRefGoogle Scholar
  57. 57.
    Boffa MB, Hamill JD, Maret D, et al, 2003 Acute phase mediators modulate thrombin-activable fibrinolysis inhibitor (TAFI) gene expression in Hep G2 cells. J Biol Chem 278: 9250–9257.CrossRefGoogle Scholar
  58. 58.
    Laug WE, 1983 Glucocorticoids inhibit plasminogen activator production by endothelial cells. Thromb Hemost 50: 888–892.CrossRefGoogle Scholar
  59. 59.
    Barouski-Miller PA, Gelehrter TD, 1982 Paradoxical effects of glucocorticoids on regulation of plasminogen activator activity of rat hepatoma cells. Cell Biol 79: 2319–232.Google Scholar
  60. 60.
    Oikarinen A, Hoythya M, Jarvinen M, 1990 Dexamethasone-induces plasminogen activator inhibitor: characterization, purification and preparation of monoclonal anti-bodies. Arch Dermatol Res 282: 153–158.CrossRefGoogle Scholar
  61. 61.
    Halleux CM, Declerck PJ, Tran SL, Detry R, Birchard SM, 1999 Hormonal control of plasminogen activator inhibitor-1 gene expression and production in human adipose tissue: stimulation by glucocorticoids and inhibition by catecholamines. J Cin Endocrinol Metab 84: 4097–4105.Google Scholar
  62. 62.
    Healy AM, Gelerhrter TD, 1994 Induction of plasminogen activator inhibitor-1 in HepG2 human hepatoma cells by mediators of the Acute phase response. J Biol Chem 269: 19095–19100.PubMedGoogle Scholar
  63. 63.
    Morange PE, Aubert J, Peiretti F, et al, 1999 Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue. Diabetes 48: 890–895.CrossRefGoogle Scholar
  64. 64.
    van Zonneveld AJ, Curriden SA, Loskutoff DK, 1988 Tpe 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter. Proct Natl Acad Sci USA 85: 5525–5529.CrossRefGoogle Scholar
  65. 65.
    Yamamoto Y, Ishiyu A, Ikeda H, Otsuka N, Yoshiki T, 2004 Dexamethasone increased plasminogen activator inhibitor-1 expression on human umbilical vein endothelial cells: an additive effect to tumor necrosis factor-α. Pathobiology 71: 295–301.CrossRefGoogle Scholar
  66. 66.
    Dusek T, Kastelan D, Solak M, et al, 2008 Polycythemia as the first manifestation of Cushing’s disease. J Endo-crinol Invest 31: 940.CrossRefGoogle Scholar
  67. 67.
    Schulman S, Granqvist S, Holmstrom M, et al, 1997 The duration of oral anticoagulant therapy after a second episode of venous thromboembolism. N Engl J Med 336: 393–398.CrossRefGoogle Scholar
  68. 68.
    Hemker HC, Wielders S, Kessels H, Beguin S, 1993 Continuous registration of thrombin generation in plasma, its use for the determination of thrombin potential. Thromb Haemost 70: 617–624.PubMedGoogle Scholar
  69. 69.
    Baglin T, 2005 The measurement and application of thrombin generation. Br J Haematol 130: 653–661.CrossRefGoogle Scholar
  70. 70.
    Jacoby R, Owings T, Ortega R, Gosselin R, Feldman E, 2001 Biochemical basis for the hypercoagulable state seen in Cushing syndrome. Arch Surg 136: 1003–1007.CrossRefGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2012

Authors and Affiliations

  • Predrag Miljic
    • 1
  • Dragana Miljic
    • 2
  • Joshua William Cain
    • 3
  • Márta Korbonits
    • 3
  • Vera Popovic
    • 2
  1. 1.Clinic for Hematology, University Clinical Centre of Serbia, Faculty of MedicineBelgrade UniversityBelgradeUK
  2. 2.Clinic for Endocrinology, University Clinical Centre of Serbia, Faculty of MedicineBelgrade UniversityBelgradeUK
  3. 3.Department of Endocrinology, Barts and the London School of MedicineQueen Mary University of LondonUK

Personalised recommendations