Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lipid accumulation product is associated with metabolic syndrome in women with polycystic ovary syndrome

  • 2 Accesses

  • 10 Citations

Abstract

OBJECTIVE: There is a need for a simple and accurate method for the assessment of cardiovascular risk in polycystic ovary syndrome (PCOS). Lipid accumulation product (LAP) is based on the assessment of waist circumference and serum triglycerides that yield an estimation of lipid overaccumulation. We aimed to determine whether LAP is associated with metabolic syndrome (MetS) in Caucasian women with PCOS. DESIGN: We studied 222 women with PCOS who were diagnosed using the Rotterdam criteria. In all the subjects and controls, LAP was determined and the MetS was assessed using three different international criteria, NCEP-ATP III, IDF, and JIS. ROC curve and logistic regression analyses were performed to determine and analyze associations with the MetS. RESULTS: In the study population the prevalence of MetS was 16.2–19.4%. The cut-off value of 25.9 determined that LAP has the strongest association with MetS whichever international criteria are used, followed by HDL (NCEP-ATP III and JIS) and glucose (IDF). CONCLUSIONS: LAP is used as an independent clinical indicator for MetS in our PCOS women of Caucasian origin. The high diagnostic accuracy of LAP is superseding the need for the use of multiple clinical indicators for the assessment of lipid accumulation as a prerequisite for diagnosis of metabolic and cardiovascular diseases in PCOS women.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R, 1998 Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab 83: 3078–3082.

  2. 2.

    Diamanti-Kandarakis E, Kouli CR, Bergiele AT, et al, 1999 A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 84: 4006–4011.

  3. 3.

    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO, 2004 The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 89: 2745–2749.

  4. 4.

    Diamanti-Kandarakis E, Dunaif A, 2012 Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33: 981–1030.

  5. 5.

    Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J, 1999 Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 22: 141–146.

  6. 6.

    Legro RS, Kunselman AR, Dunaif A, 2001 Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am J Med 111: 607–613.

  7. 7.

    Mani H, Levy MJ, Davies MJ, et al, 2013 Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin Endocrinol (Oxf) 78: 926–934.

  8. 8.

    Cussons AJ, Watts GF, Burke V, Shaw JE, Zimmet PZ, Stuckey BG, 2008 Cardiometabolic risk in polycystic ovary syndrome: a comparison of different approaches to defining the metabolic syndrome. Hum Reprod 23: 2352–2358.

  9. 9.

    Gambineri A, Repaci A, Patton L, et al, 2009 Prominent role of low HDL-cholesterol in explaining the high prevalence of the metabolic syndrome in polycystic ovary syndrome. Nutr Metab Cardiovasc Dis 19: 797–804.

  10. 10.

    Panidis D, Macut D, Tziomalos K, et al, 2013 Prevalence of metabolic syndrome in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 78: 586–592.

  11. 11.

    Coviello AD, Legro RS, Dunaif A, 2006 Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 91: 492–497.

  12. 12.

    Macut D, Damjanovic S, Panidis D, et al, 2006 Oxidised low-density lipoprotein concentration — early marker of an altered lipid metabolism in young women with PCOS. Eur J Endocrinol 155: 131–136.

  13. 13.

    Kahn HS, 2005 The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5: 26.

  14. 14.

    Taverna MJ, Martinez-Larrad MT, Frechtel GD, Serrano-Rios M, 2011 Lipid accumulation product: a powerful marker of metabolic syndrome in healthy population. Eur J Endocrinol 164: 559–567.

  15. 15.

    Wehr E, Gruber HJ, Giuliani A, Möller R, Pieber TR, Obermayer-Pietsch B, 2011 The lipid accumulation product is associated with impaired glucose tolerance in PCOS women. J Clin Endocrinol Metab 96: E986–990.

  16. 16.

    Xiang S, Hua F, Chen L, Tang Y, Jiang X, Liu Z, 2013 Lipid accumulation product is related to metabolic syndrome in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes 121: 115–118.

  17. 17.

    Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). 2004 Hum Reprod 19: 41–47.

  18. 18.

    Friedewald WT, Levy RI, Fredrickson DS, 1972 Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499–502.

  19. 19.

    Mathur RS, Moody LO, Landgrebe S, Williamson HO, 1981 Plasma androgens and sex hormone-binding globulin in the evaluation of hirsute females. Fertil Steril 35: 29–35.

  20. 20.

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC, 1985 Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412–419.

  21. 21.

    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. 2002 Circulation 106: 3143–3421.

  22. 22.

    Alberti KG, Zimmet P, Shaw J, 2005 The metabolic syndrome—a new worldwide definition. Lancet 366: 1059–1062.

  23. 23.

    Alberti KG, Eckel RH, Grundy SM, et al, 2009 Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120: 1640–1645.

  24. 24.

    Hanley JA, McNeil BJ, 1983 A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148: 839–843.

  25. 25.

    Apridonidze T, Essah PA, Iuorno MJ, Nestler JE, 2005 Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 90: 1929–1935.

  26. 26.

    Carmina E, Napoli N, Longo RA, Rini GB, Lobo RA, 2006 Metabolic syndrome in polycystic ovary syndrome (PCOS): lower prevalence in southern Italy than in the USA and the influence of criteria for the diagnosis of PCOS. Eur J Endocrinol 154: 141–145.

  27. 27.

    Wijeyaratne CN, Seneviratne Rde A, Dahanayake S, et al, 2011 Phenotype and metabolic profile of South Asian women with polycystic ovary syndrome (PCOS): results of a large database from a specialist Endocrine Clinic. Hum Reprod 26: 202–213.

  28. 28.

    Dewailly D, Contestin M, Gallo C, Catteau-Jonard S, 2010 Metabolic syndrome in young women with the polycystic ovary syndrome: revisiting the threshold for an abnormally decreased high-density lipoprotein cholesterol serum level. BJOG 117: 175–180.

  29. 29.

    Alberti KG, Zimmet P, Shaw J, 2006 Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23: 469–480.

  30. 30.

    Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R, 2002 Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord 26: 883–896.

  31. 31.

    Van Pelt RE, Evans EM, Schechtman KB, Ehsani AA, Kohrt WM, 2002 Contributions of total and regional fat mass to risk for cardiovascular disease in older women. Am J Physiol Endocrinol Metab 282: E1023–1028.

  32. 32.

    Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET, 2004 Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab 89: 2569–2575.

  33. 33.

    Wiltgen D, Benedetto IG, Mastella LS, Spritzer PM, 2009 Lipid accumulation product index: a reliable marker of cardiovascular risk in polycystic ovary syndrome. Hum Reprod 24: 1726–1731.

  34. 34.

    Lean ME, Han TS, Morrison CE, 1995 Waist circumference as a measure for indicating need for weight management. BMJ 311: 158–161.

  35. 35.

    Underwood PM, 2004 Cardiovascular risk, the metabolic syndrome and the hypertriglyceridaemic waist. Curr Opin Lipidol 15: 495–497.

  36. 36.

    McGee DL, 2005 Body mass index and mortality: a meta-analysis based on person-level data from twenty-six observational studies. Ann Epidemiol 15: 87–97.

  37. 37.

    Macut D, Panidis D, Glisic B, et al, 2008 Lipid and lipoprotein profile in women with polycystic ovary syndrome. Can J Physiol Pharmacol 86: 199–204.

  38. 38.

    Nofer JR, van der Giet M, Tolle M, et al, 2004 HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113: 569–581.

  39. 39.

    Bonora E, Kiechl S, Willeit J, et al, 1998 Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes 47: 1643–1649.

  40. 40.

    Nesto RW, 2003 The relation of insulin resistance syndromes to risk of cardiovascular disease. Rev Cardiovasc Med 4: Suppl 6: 11–18.

  41. 41.

    Ehrmann DA, Liljenquist DR, Kasza K, et al; PCOS/Troglitazone Study Group, 2006 Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 91: 48–53.

  42. 42.

    Taieb J, Mathian B, Millot F, et al, 2003 Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clin Chem 49: 1381–1395.

  43. 43.

    Hahn S, Kuehnel W, Tan S, et al, 2007 Diagnostic value of calculated testosterone indices in the assessment of polycystic ovary syndrome. Clin Chem Lab Med 45: 202–207.

Download references

Author information

Correspondence to Djuro Macut MD, PhD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macut, D., Božić Antić, I., Bjekić-Macut, J. et al. Lipid accumulation product is associated with metabolic syndrome in women with polycystic ovary syndrome. Hormones 15, 35–44 (2016). https://doi.org/10.1007/BF03401401

Download citation

Key words

  • Lipid accumulation product
  • Metabolic syndrome
  • Polycystic ovary syndrome
  • Triglycerides
  • Waist circumference