Advertisement

Interceram - International Ceramic Review

, Volume 66, Issue 6, pp 232–236 | Cite as

Wollastonite-Pseudowollastonite from Silica Fume, Limestone and Glass Cullet Composite

  • S. H. Abd El Rahim
  • A. A. Melegy
  • E. M. A. Hamzawy
Raw Materials Worldwide

Abstract

Composite materials were prepared from nominal wollastonite powder and glass cullet. Limestone, silica fume and glass cullet were used as raw materials. Wollastonite and pseudowollastonite with traces of cristobalite were phases that developed in the composite materials. The microstructure showed major wollastonite and pseudowollastonite appearing as rounded rod-shaped crystals, spread in a glassy matrix. The density of sintered composite increased from 1.8685–2.5746 g/cm3 and its hardness increased from 462–532 kg/mm2 as the nominal wollastonite ratio decreased. The coefficient of thermal expansion decreased from 8.00–7.30 × 10−6 K−1 as the nominal wollastonite ratio increased.

Keywords

silica fume limestone glass cullet wollastonite pseudowollastonite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yang, H., Prewitt, C.T.: Crystal structure and compressibility of a two-layer polytype of pseudowollastonite (CaSiO3). Am. Mineralogist 84 (1999) 1902–1905CrossRefGoogle Scholar
  2. [2]
    Yun, Y.H., Yun, S.D., Park, H.R., Lee, Y.K., Youn, Y.N.: Preparation of β-wollastonite glass-ceramics. J. Mater. Synth. and Proc. 10 (2003) [4] 205–209CrossRefGoogle Scholar
  3. [3]
    Risbud, M., Saheb, D.N., Jog, J., Bhonde, R.: Preparation, characterization and in vitro biocompatibility evaluation of poly (butylene terephthalate)/wollastonite composites. Biomaterials 22 (2001) 1591–1597CrossRefGoogle Scholar
  4. [4]
    Svab, I., Musil, V., Pustak, A., Smit, I.: Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology. Polym. Comp. 30 (2009) [7] 1007–1015CrossRefGoogle Scholar
  5. [5]
    Luyta, A.S., Dramićanin, M.D., Antić, Z., Djoković, V.: Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polym. Test 28 (2009) 348–356CrossRefGoogle Scholar
  6. [6]
    Wei, J., Shin, F.Ch.J.-W., Hong, H., Dai, Ch., Su, J., Liu, Ch.: Preparation and characterization of bioactive mesoporous wollastonite-polycaprolactone composite scaffold. Biomaterials 30 (2009) [6] 1080–1088CrossRefGoogle Scholar
  7. [7]
    Fleischer, M.: New mineral names: Cyclowollastonite. Am. Mineralogist 58 (1973) 560Google Scholar
  8. [8]
    Saffarzadeh, A., Shimaoka, T., Motomura, Y., Watanabe, K.: Chemical and mineralogical evaluation of slag products derived from the pyrolysis/melting treatment of MSW. Waste Management 26 (2006) [12] 1443–1452CrossRefGoogle Scholar
  9. [9]
    Zhang, N., Molenda, J.A., Fournelle, J.H., Murphy, W.L., Sahai, N.: Effects of pseudowollastonite (CaSiO3) bioceramic in vitro activity of human mesenchymal stem cells. Biomaterials 31 (2010) [30] 7653–7665CrossRefGoogle Scholar
  10. [10]
    Piva, J.H., Wanderlind, A., Just, J., Montedo, O.R.K., Junior, A.D.N.: Sintering and crystallization of plates prepared from coarse glass ceramic frits. Ceram. Inter. 39 (2013) [8] 9137–9144CrossRefGoogle Scholar
  11. [11]
    Matsueda, Hiroharu: Iron-wollastonite from the Sampo mine showing properties distinct from those of wollastonite. Mineral. J. Japan 7 (1973) 180–201CrossRefGoogle Scholar
  12. [12]
    Teixeira, S.R., Souza, A.E., Carvalho, C.L., Reynoso, V.C.S., Romero, M., Rincón, J. Ma.: Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials. Mater. Characterization 98 (2014) 209–214CrossRefGoogle Scholar
  13. [13]
    Osborn, E.F., Schairer, J.F.: The ternary system pseudowollastonite-akermanite gehlenite. Am. J. Sci. 239 (1941) 715–736CrossRefGoogle Scholar
  14. [14]
    Kushiro, I.: Wollastonite-pseudowollastonite inversion. Year Book Carnegie Inst. Washington 63 (1964) 83–84Google Scholar
  15. [15]
    Huckenholz, H.G., Yoder, H.S.: The gehlenite-H2O and wollastonite-H2O systems. Year Book Carnegie Inst. Washington 73 (1974) 440–443Google Scholar
  16. [16]
    Holand, W., Beall, G.H.: Glass-ceramic technology. 2nd ed., Johan Wiley & Sons, Hoboken, New Jersey (2012), ISBN: 978-0-470-48787-7CrossRefGoogle Scholar
  17. [17]
    Shido, F., Hagiwara, H.: Non-vitreous ceramic ware made from pseudowollastonite. United States Patent office, patented July 14, Application No. 3,520,705 (1970)Google Scholar
  18. [18]
    Trojer, F.J.: The crystal structure of a high-pressure polymorph of CaSiO3. Zeitschrift fur Kristallographie 130 (1969) 185–206CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • S. H. Abd El Rahim
    • 1
  • A. A. Melegy
    • 1
  • E. M. A. Hamzawy
    • 2
  1. 1.Geological Sciences DepartmentNational Research CentreGizaEgypt
  2. 2.Glass Research DepartmentNational Research CentreGizaEgypt

Personalised recommendations