Advertisement

Interceram - International Ceramic Review

, Volume 66, Issue 5, pp 180–184 | Cite as

Hot corrosion behavior of multi-layer suspension plasma sprayed Gd2Zr2O7/YSZ thermal barrier coatings

  • K. P. Jonnalagadda
  • R. L. Peng
  • S. Mahade
  • N. Markocsan
  • P. Nylén
  • S. Björklund
  • N. Curry
  • X.-H. Li
High-Performance Ceramics

Abstract

This study investigates the corrosion resistance of double layer Gd2Zr2O7/YSZ, triple layer dense Gd2Zr2O7 / Gd2Zr2O7/YSZ and a reference single layer YSZ coating with a similar overall top coat thickness of 300–320 µm. All the coatings were manufactured by suspension plasma spraying (SPS), resulting in a columnar structure. Corrosion tests were conducted at 900°C for 8 hours using vanadium pentoxide and sodium sulphate as corrosive salts at a concentration of 4 mg/cm2. SEM investigations after the corrosion tests show that Gd2Zr2O7 coatings exhibited lower corrosion resistance than the reference material, YSZ. Reaction between the corrosive salts and Gd2Zr2O7 results in the formation of gadolinium vanadate (GdVO4) along the top surface and between the columns. While the stresses due to phase transformation of zirconia can be relieved to some extent by realigning of the columns in the top coat, it is believed that GdVO4 formation between the columns, along with low fracture toughness of Gd2Zr2O7 had resulted in lower corrosion resistance. Furthermore, the presence of a relatively dense layer of Gd2Zr2O7 on the top, as a preventive layer for salt infiltration, did not improve the corrosion resistance.

Keywords

gadolinium zirconate hot corrosion multi-layer thermal barrier coatings suspension plasma spraying vanadium pentoxide sodium sulfate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Padture, N. P.; Gell, M.; Jordan, E. H.: “Thermal barrier coatings for gas-turbine engine applications”, Science (2002), Issue 5566, pp.280/84.Google Scholar
  2. [2]
    Gleeson, B.: “Thermal barrier coatings for aero-engine applications”, Journal of Propulsion and Power (2006), Vol 22, pp. 375/83.CrossRefGoogle Scholar
  3. [3]
    DeMasi-Marcin, Gupta, D.: “Protective coatings in the gas turbine engine”, Surface and coatings technology (1994), Vol. 68–69, pp.1/9.Google Scholar
  4. [4]
    Pomeroy, M. J.: “Coatings for Gas Turbine Materials and Long Term Stability Issues”, Materials & Design (2005), Vol. 26 No.3, pp. 223/31.Google Scholar
  5. [5]
    Goward, G. W.: “Progress in coatings for gas turbine foils”, Surface and coating technology (1998), Vol. 108–109, pp. 73/79.Google Scholar
  6. [6]
    Bose, S.: “High temperature coatings”, Butterworth-Heinemann (2007).CrossRefGoogle Scholar
  7. [7]
    Chen, Z.; Speakman, S.; Howe, J.; Wang, et al.: “Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings”, Journal of European Ceramic Society (2009), Vol 29, pp. 1403/1411.Google Scholar
  8. [8]
    Habibi, M. H.; Wang L.; Guo, S. M.: “Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050°C”, Journal of European Ceramic Society (2012), Vol 32, pp. 1635/42.CrossRefGoogle Scholar
  9. [9]
    Clarke, D. R.; Phillpot, S. R.: “Thermal barrier coating materials”, Materials Today (2005), Vol.8, Issue 6, pp. 22/29.CrossRefGoogle Scholar
  10. [10]
    Mauer, G.; Jarligo, M. O.; Mack D. E.; Vassen R.: “Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions (2013)”, Journal of Thermal Spray Technology (2013), Vol.22, Issue 5, pp. 646/58.CrossRefGoogle Scholar
  11. [11]
    Leckie, R. M.; Kraemer, S.; Ruhle, M.; Levi, C. G.: “Thermochemical compatibility between alumina and ZrO2 — GdO3/2 thermal barrier coatings”, Acta Materialia (2005), Vol. 53, Issue 11, pp. 3281/92.CrossRefGoogle Scholar
  12. [12]
    Bast, U.; Schumann, E.: “Development of novel oxide materials for TBC’s”, Ceramic Engineering Science Proceedings (2002), Vol.23, Issue 4, pp. 525/32.Google Scholar
  13. [13]
    Curry, N.; VanEvery, K.; Snyder, T.; Markocsan, N: “Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier”, Coatings (2014), Vol.4, No.3, pp. 630/650.CrossRefGoogle Scholar
  14. [14]
    Curry, N.; VanEvery, K.; Synder et al.: “Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coating Produced with Varied Suspension parameters”, Coatings (2015), Vol. 5, No.3, pp.338/356.CrossRefGoogle Scholar
  15. [15]
    Mahade, S.; Curry, N.; Bjorklund, S. et al.: “Thermal conductivity and thermal cyclic fatigue of multi-layered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray,”Surface & Coatings Technology (2015), Vol. 283, pp. 329/336.CrossRefGoogle Scholar
  16. [16]
    Curry, N.: “Design of Thermal Barrier Coatings”, PhD. Thesis, 2014.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • K. P. Jonnalagadda
    • 1
  • R. L. Peng
    • 1
  • S. Mahade
    • 2
  • N. Markocsan
    • 2
  • P. Nylén
    • 2
  • S. Björklund
    • 2
  • N. Curry
    • 3
  • X.-H. Li
    • 4
  1. 1.Department of Management and EngineeringLinköping UniversityLinköpingSweden
  2. 2.Department of Engineering ScienceUniversity WestTrollhättanSweden
  3. 3.Treibacher Industrie AGAlthofenAustria
  4. 4.Siemens Industrial Turbomachinery ABFinspångSweden

Personalised recommendations