Advertisement

Interceram - International Ceramic Review

, Volume 66, Issue 5, pp 172–179 | Cite as

Hydrothermal Treatment Management of High Alumina Waste for Synthesis of Nanomaterials with New Morphologies

  • H. H. Abo-Almaged
  • A. F. Moustafa
  • A. M. Ismail
  • S. K. Amin
  • M. F. Abadir
High-Performance Ceramics

Abstract

Kiln rollers’ grind waste powders (KRGW) collected from a ceramic factory are considered a high alumina waste consisting of several phases. The KRGW was treated hydrothermally at 150°C for different time periods. The hydrothermal method was found to be a very effective method for the management of KRGW in synthesizing new nanomaterials with new morphologies. Raw and treated kiln rollers’ grind waste was characterized using XRF, XRD, TEM, BET, DTA, and TGA. TEM of the raw KRGW showed a lamellar crystal structure with different shapes and morphologies. XRD displayed hour different phases with a high percentage of mullite and corundum due to the high levels of Al and Si in the raw waste. Treated KRGW exhibited nano-sieves with different morphologies consisting of two predominant phases, namely calcium aluminum oxide and corundum. Results indicated that the hydrothermal process assists phase changes, crystal size, and morphology of the KRGW. This modification is expected to improve over all properties of KRGW for efficient practical applications.

Keywords

waste management kiln rollers grind waste hydrothermal treatment phase transformation alumina waste 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zimbili, O., Salim, W., Ndambuki, M.: A review on the usage of ceramic wastes in concrete production. Internat. J. of Civil, Architectural, Structural and Construction Engineering 8 (2014) [1] 91–95Google Scholar
  2. [2]
    Torgal, F.P., Jalali, S.: Reusing ceramic wastes in concrete. Construction and Building Materials 24 (2010) 832–838CrossRefGoogle Scholar
  3. [3]
    Tabak, Y., Kara, M., Günay, E., Yildirim, S.T., Yilmaz, Ş.: Ceramic tile waste as a waste management solution for concrete. 3rd Internat. Conference on Industrial and Hazardous Waste Management (CRETE) (2012) 1–8Google Scholar
  4. [4]
    Medina, C., Sánchez, de Rojasb, M.I., Frías, M.: Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement and Concrete Composites 34 (2012) [1] 48–54CrossRefGoogle Scholar
  5. [5]
    Corominas, A., Etxeberria, M.: Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Construction and Building Materials 68 (2014) 618–626CrossRefGoogle Scholar
  6. [6]
    Halicka, A., Ogrodnik, P., Zegardlo, B.: Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials 48 (2013) 295–305CrossRefGoogle Scholar
  7. [7]
    Elçi, H.: Utilization of crushed floor and wall tile wastes as aggregate in concrete production. J. of Cleaner Production 112 (2016) [1] 742–752CrossRefGoogle Scholar
  8. [8]
    Ji, R., Zhang, Z., He, Y., Liu, L., Wang, X.: Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue. Construction and Building Materials 85 (2015) 119–126CrossRefGoogle Scholar
  9. [9]
    Penteado, C., de Carvalho, E., Lintz, R.: Reusing ceramic tile polishing waste in paving block manufacturing. J. of Cleaner Production 112 (2016) [1] 514–520CrossRefGoogle Scholar
  10. [10]
    Roushdy, M.H., Amin, Sh.K., Ahmed, M.M., Abadir, M.F: Reuse of the product obtained on grinding kiln rollers in the manufacture of ceramic wall tiles. Ceramics — Technical 38 (2014) 60–66Google Scholar
  11. [11]
    Gemmi, M., Merlini, M., Cruciani, G., Artioli, G.: Non-ideality and defectivity of the åkermanite-gehlenite solid solution: An X-ray diffraction and TEM study.Amer. Mineralogist 92 (2007) 1685–1694. DOI:  10.2138/am.2007.2380 CrossRefGoogle Scholar
  12. [12]
    Trindade, M.J., Dias, M.I., Coroado, J., Rocha, F.: Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science 42 (2009) 345–355. DOI: 10.1016/j.clay.2008.02.008 CrossRefGoogle Scholar
  13. [13]
    Molenaar, J.M.M., Katgerman, L., Kool, W.H., Smeulders, R.J.: On the formation of the stircast structure. J. of Mater. Sci. 21 (1986) 389–394CrossRefGoogle Scholar
  14. [14]
    Schulze, T.P., Davis, S.H.: Shear stabilization of morphological instability during directional solidification. J. of Crystal Growth 149 (1995) 253–265CrossRefGoogle Scholar
  15. [15]
    Aras A.: The change of phase composition in kaolinite and illite-rich clay-based ceramic bodies. Applied Clay Sci. 24 (2004) [3–4] 257–269CrossRefGoogle Scholar
  16. [16]
    Louisnathan, S.J.: Refinement of the crystal structure of a natural Gehlenite Ca2Al(AlSi)2O7. Canadian Mineral 10 (1971) 822–837Google Scholar
  17. [17]
    Lo, C.L., Duh, J.G., Chiou, B.S., Lee, W.H.: Microstructure characterization for Anorthite composite glass with nucleating agent of TiO2 under non-isothermal crystallization. Mater. Res. Bull. 37 (2002) 1949–1960CrossRefGoogle Scholar
  18. [18]
    Riccardi, M.P., Messiga, B., Duminuco, P.: An approach to the dynamics of clay firing. Applied Clay Sci. 15 (1999) [3–4] 393–409CrossRefGoogle Scholar
  19. [19]
    Sonuparlak, B., Sarikaya, M., Aksay, I.A.: Spinel phase formation during the 980°C exothermic reaction in the Kaolinite-to-Mullite reaction series. J. of the Amer. Ceram. Soc. 70 (1987) [11] 837–842CrossRefGoogle Scholar
  20. [20]
    Seidel, H., Csepregi, L., Heuberger, A., Baumgartel, H.: Anisotropic etching or crystalline silicon in alkaline solutions, I. orientation dependence and behavior of passivation layers. J. of the Electrochemical Soc. 137 (1990) [11] 3612–3626CrossRefGoogle Scholar
  21. [21]
    Dong, J., Huang, S.H.: Low-reflective surface texturing for large area multi-crystalline silicon using NaOH-NaCl solution. Surface Engineering and Applied Electrochemistry 50 (2014) [1] 25–29CrossRefGoogle Scholar
  22. [22]
    Onutai, S., Wasanapiarnpong, T., Jiemsirilers, S., Wada, S., Thavorniti, P.: Effect of sodium hydroxide solution on the properties of geopolymer based on fly ash and aluminium waste blend. Suranaree J. of Sci. & Technology 21 (2014) [1] 9–14Google Scholar
  23. [23]
    Koros, W.J., Ma, Y.H., Shimidzu, T.: Terminology for membranes and membrane processes. Pure and Applied Chemistry 68 (1996) [7] 1479–1489CrossRefGoogle Scholar
  24. [24]
    Jiang, Z., Yang, J., Ma H., Wang L., Ma X.: Reaction behavior of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process. Transactions of Nonferrous Metals Soc. of China 25 (2015) [6] 2065–2072. DOI:  10.1016/S1003-6326(15)63816-X CrossRefGoogle Scholar
  25. [25]
    Brunaur, S., Deming, L.S., Deming, W.E., Teller, E.: On a theory of the Van der Waals adsorption of gases. J. of the Amer. Chemical Society 62 (1940) [7] 1723–1732CrossRefGoogle Scholar
  26. [26]
    Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area, and Porosity. 2nd Edition, Academic Press INC, London, ISBN 0-12-300956-1 (1982)Google Scholar
  27. [27]
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R., Rouquerol, J., Siemienwska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57 (1985) [4] 603–619CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • H. H. Abo-Almaged
    • 1
  • A. F. Moustafa
    • 2
  • A. M. Ismail
    • 3
  • S. K. Amin
    • 4
  • M. F. Abadir
    • 5
  1. 1.Refractories, Ceramic and Building Materials Department, Inorganic Chemical Industries and Mineral Resources DivisionNational Research CentreDokki, GizaEgypt
  2. 2.Environmental Impact Assessment Unit & Environmental Monitoring Laboratory UnitGeneral Administration of Environmental AffairsBeni-Suef GovernorateEgypt
  3. 3.Industrial Technological Development Sector - Ministry of Investment, Trade and IndustryGizaEgypt
  4. 4.Chemical Engineering and Pilot Plant Department, Engineering Research DivisionNational Research CentreDokki, GizaEgypt
  5. 5.Chemical Engineering Department, Faculty of EngineeringCairo UniversityGizaEgypt

Personalised recommendations