Synthesis of Low Temperature Cristobalite Na1.55Al1.55Si0.45O4/Mullite Ceramic Fibers Using a Nanocellulose Fiber Aerogel Template

  • S. H. KenawyEmail author
  • M. Hassan
  • R. I. Abou-Zeid
  • G. T. El-Bassyouni
High-Performance Ceramics


The most common form of crystalline silica found in rice straw is quartz. On the other hand, cristobalite considered as one form of crystalline silica. Mullite (3Al2O3·2SiO2) is a well-known, stable compound in the alumina-silica system. Due to its structural advantage, it is the most desirable phase in alumina ceramics. The mineral cristobalite (silicon dioxide) is a high-temperature polymorph of silica, but a distinct crystal structure. The purpose of the present study was the preparation of nanofibrillated cellulose aerogel fibers (NFCA) from bagasse pulp as a template for in situ preparation of cristobalite/mullite nanorods. This study analyzes the use of biomass combustion ash waste as secondary raw materials in the fabrication of ceramic fibers. High-quality silica nanoparticles (SNPs) can be won from rice straw as one of agricultural waste. Rice husk (RH) was used as a possible starting material in order to extract silica via an environmentally friendly technique. The extracted amorphous silica was reprocessed in order to synthesize nanocrystalline cristobalite/mullite nanorods and/or fibers. Samples were determined by XRD, EDX, SEM, and TEM. The energy dispersive X-ray spectrum (EDX), depicts the Al, O, Si, and Na peaks. Contrary, the X-ray diffraction (XRD) pattern conceals the diffraction peaks of both the cristobalite and the mullite. TEM exposed the mullite inside the alumina grains. The obtained composite of nanofibers are composed of mullite and cristobalite nanocrystals. The composite fibers exhibited a coarse surface, due to the precipitation of mullite and cristobalite nanocrystals.


cristobalite mullite nanocrystals rice husk nanofibrillated cellulose aerogel fibers (NFCA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cameron, W.E: Mullite: A substituted alumina. Am. Mineral. 62 (1977) 747–755Google Scholar
  2. [2]
    Pani, S., Sahoo, R.K., Dash, N., Singh, S.K., Mohapatra, B.K.: Cost effective and minimal time synthesis of mullite from a mine waste by thermal plasma process, Adv. Mater. Lett. 6 (2015) [4] 318–323CrossRefGoogle Scholar
  3. [3]
    Bhattacharyya, S., Singh, R.: Effect of solution ph on mullite phase formation from a diphasic precursor powder. J. Austral. Ceram. Soc. 52 (2016) [2] 20–31Google Scholar
  4. [4]
    Shinohara, Y., Kohyama, N.: Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating. Industrial Health 42 (2004) 277–285CrossRefGoogle Scholar
  5. [5]
    An, G.S., Choi, S.W., Kim, T.G., Shin, J.R., Kim, Y.-I., Choi, S.-C., Jung, Y.-G.: Amino-functionalization of colloidal alumina particles for enhancement of the infiltration behavior in a silica-based ceramic core. Ceram. Int., Part A., 43 (2017) [1] 157–161CrossRefGoogle Scholar
  6. [6]
    Faizul, C.P., Abdullah, C., Fazlul, B.: Review of extraction of silica from agricultural wastes using acid leaching treatment. Adv. Mater. Res. 626 (2013) 997–1000CrossRefGoogle Scholar
  7. [7]
    Korsunska, N., Stara, T., Strelchuk, V., Kolomys, O., Kladko, V., Kuchuk, A., Khomenkova, L., Jedrzejewski, J., Balberg, I.:The influence of annealing on structural and photoluminescence properties of silicon-rich Al2O3 films prepared by co-sputtering. Physica E51 (2013) 115–119CrossRefGoogle Scholar
  8. [8]
    Zhao, Q., Zhang, B., Quan, H., Yam, R.C.M., Yuen, R.K.K., Li, R.K.Y.: Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Comp. Sci. and Technol. 69 (2009) 2675–2681CrossRefGoogle Scholar
  9. [9]
    Deshmukh, P., Bhatt, J., Peshwe D., Pathak, S.: Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash. Trans. Indian Inst. Met. 65 (2012) [1] 63–70CrossRefGoogle Scholar
  10. [10]
    Zhou, J., Sun, G., Zhao, H., Pan, X., Zhang, Z., Fu, Y., Mao, Y., Xie, E.: Tunable white light emission by variation of composition and defects of electrospun Al2O3-SiO2 nanofibers. Beilstein J. Nanotechnol. 6 (2015) 313–320CrossRefGoogle Scholar
  11. [11]
    Ghorbani, F., Sanati, A.M., Maleki, M.: Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environmental Studies of Persian Gulf 2 (2015) [1] 56–65Google Scholar
  12. [12]
    Malki, M., Abbas, V.: Controlling aluminum silicate formation in membrane separation processes. Proc. of the International Desalination Association World Congress on Desalination and Water Reuse 2013. Tianjin, China. REF: IDAWC/TIAN13-252Google Scholar
  13. [13]
    Hassan, E.A., Hassan, M.L.: Rice straw nano fibrillated cellulose films with antimicrobial properties via supramolecular route. Ind. Crop. Prod. 93 (2016) 142–151CrossRefGoogle Scholar
  14. [14]
    Wise, L.E., Murphy, M., D’Addieco, A.A.: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicelluloses. Paper Trade J. 122 (1946) 35–43Google Scholar
  15. [15]
    Browning, B.L.: Methods of wood chemistry, Vol. 2. Interscience Publishers, New York (1967), 519–557Google Scholar
  16. [16]
    Zemnukhova, L.A. et al.: Composition and structure of amorphous silica produced from rice husk and straw. Neorganicheskie Materialy 50 (2014) [1] 82–89Google Scholar
  17. [17]
    Athinarayanan, B., Jeong, D.-Y., Kang, J.-H., Koo, B.-H.: Fabrication of hydrophobic and anti-reflective polymeric films using anodic aluminum-oxide imprints. J. Korean Phys. Soc. 67 (2015) [11] 1977–1985CrossRefGoogle Scholar
  18. [18]
    Sankar, S., Sharma, S.K., Kaur, N., Lee, B., Kim, D.Y., Lee, S., Jung, H.: Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceramics International 42 (2016) 4875–4885CrossRefGoogle Scholar
  19. [19]
    Tong, Q., Wang, J., Li, Z., Zhou, Y.: Preparation and properties of Si2N2O/β-cristobalite composites. J. Eur. Ceram. Soc. 28 (2008) [6] 1227–1234CrossRefGoogle Scholar
  20. [20]
    Yang, W., Wang, H., Cheng, X., Xie, Z., An, L.: Perfect single-crystal alumina microspheres. J. Am. Ceram. Soc. 91 (2008) [8] 2732–2735CrossRefGoogle Scholar
  21. [21]
    Palmero, P., Pulci, G., Marra, F., Valente, T., Montanaro, L.: Al2O3/ZrO2/Y3Al5O12 Composites: A high-temperature mechanical characterization. Materials 8 (2015) 611–624CrossRefGoogle Scholar
  22. [22]
    Osendi, M., Baudin, I., de Aza, C., Moya, S.: Processing and sintering of a 3:2 alumina silica gel. Ceram. Int. 18 (1992) [6] 365–372CrossRefGoogle Scholar
  23. [23]
    de Sola, E., Torres, R., Alarcón, J.: Thermal evolution and structural study of 2:1 mullite from monophasic gels. J. Eur. Ceram. Soc. 26 (2006) [12] 2279–2284CrossRefGoogle Scholar
  24. [24]
    Sedaghat, A., Taheri-Nassaj, E., Soraru, G.D., Ebadzadeh, T.: Microstructure development and phase evolution of alumina-mullite nanocomposite. Ceram. Int. 40 (2013) 2605–2611CrossRefGoogle Scholar
  25. [25]
    Gregory, J., Duan, J.: Hydrolyzing metal salts as coagulants. Pure Appl. Chem. 73 (2001) [12] 2017–2026CrossRefGoogle Scholar
  26. [26]
    Sergio, G., Rodrígueza, S., Kennedya, M.D., Prummelc, H., Diepeveenb, A., Schippersa, J.C., A simulation of the change in Al concentration and Al solubility in RO. Desalination 220 (2008) 305–312CrossRefGoogle Scholar
  27. [27]
    Iler, R.K.: The Chemistry of Silica: Solubility, polymerization, colloid and surface properties and biochemistry of silica. John Wiley & Sons Inc., Wilmington, Delaware, USA, (1979), ISBN: 978-0-471-02404-0Google Scholar
  28. [28]
    Wu, X., Shao, G., Cui, S., Wang, L., Shen, X.: Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum, Part A. Ceram. Int. 42 (2016) [1] 874–882CrossRefGoogle Scholar
  29. [29]
    Sardy, M., Arib, A., El Abbassi, K., Moussa, R., Gomina, M.: Elaboration and characterization of mullite refractory products from moroccan andalusite. New J. Glass and Ceram. 2 (2012) 121–125CrossRefGoogle Scholar
  30. [30]
    Yahya, H., Othmanb, M.R., Ahmad, Z.A.: Effect of mullite formation on properties of aluminosilicate ceramic balls. Procedia Chemistry 19 (2016) 922–928CrossRefGoogle Scholar
  31. [31]
    Yu, B., Shapovalov, D.S.: Experimental Mineralogy. Russ. Acad. Inst. of Sci., 142432, Academica Osypyana ul., 4, Chernogolovka (RUS), created: 17.10.1989Google Scholar
  32. [32]
    Chen, D.-Y., Shao, M.-W., Cheng, L., Wang, X.-H., Ma, D.D.D.: Strong and stable blue photoluminescence: The peapodlike SiOx@Al2O3 heterostructure. Appl. Phys. Lett. 94 (2009) [4] 043101CrossRefGoogle Scholar
  33. [33]
    Gallup, D.L.: Aluminum silicate scale formation and inhibition: Scale characterization and laboratory experiments. Geothermics 26 (1997) [4] 483–499CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • S. H. Kenawy
    • 1
    Email author
  • M. Hassan
    • 2
  • R. I. Abou-Zeid
    • 3
  • G. T. El-Bassyouni
    • 1
  1. 1.Ceramics, Refractories and Building MaterialsNational Research CentreDokki, GizaEgypt
  2. 2.Cellulose and Paper DepartmentNational Research CentreDokki, GizaEgypt
  3. 3.Advanced Materials and Nanotechnology GroupNational Research CentreDokki, GizaEgypt

Personalised recommendations