Electrospun Hydroxyapatite Containing Polyvinyl Alcohol Nanofibers Doped with Nanogold for Bone Tissue Engineering

  • A. M. HezmaEmail author
  • A. M. El-Rafei
  • G. S. El-Bahy
  • Abdelrazek B. Abdelrazzak
High-Performance Ceramics


Polyvinyl alcohol (PVA) was electrospun with addition of 5 mass-% nanohydroxyapatite (HA) powder doped with green synthesized gold nanoparticles (Au NPs). The biocomposite solution mixture was electrospun at a potential of about 20 kV. The results indicate that HA and Au NPs was uniformly distributed in the PVA nanofibers, which have diameter in the range of 100–150 nm for pure PVA and 300–400 nm with HA respectively. The thermal behavior of the composite was studied by TG and the morphology of the electrospun fibers were investigated by means of SEM technique. Tensile strength and elastic modulus confirmed that the mechanical characteristics of the PVA/HA nanofibrous mat were merely altered after Au additions. The formation of apatite like structure on fibers surface during the in-vitro test was confirmed by EDX analysis. The micro-porous fibers can have many potential uses in the repair and treatment of defected bone, and bone tissue engineering.


PVA/HA gold nanoparticles nanofibers electrospinning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zhou, Y., Yao, H., Wang, J., Wang, D., Liu, Q., Li, Z.: Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. Int. J. Nanomedicine 10 (2015) [1] 3203–3215Google Scholar
  2. [2]
    Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U., Intasanta, V.: Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydrate polymers 144 (2016) 419–427CrossRefGoogle Scholar
  3. [3]
    Dhand, C., Ong, S.T., Dwivedi, N., Diaz. S.M., Venugopal, J.R., Navaneethan, B., Fazil, M.H., Liu, S., Seitz, V., Wintermantel, E.: Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomater. 104 (2016) 323–338CrossRefGoogle Scholar
  4. [4]
    Barnes, C.P., Sell, S.A., Boland, E.D., Simpson, D.G., Bowlin, G.L.: Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug Delivery Rev. 59 (2007) [14] 1413–1433CrossRefGoogle Scholar
  5. [5]
    Shin, H.J., Lee, C.H., Cho, I.H., Kim, Y.J., Lee, Y.J., Kim, I.A., Park, K.D., Yui, N., Shin, J.W.: Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J. Biomater. Sci. Polym. 17 (2006) [1–2] 103–119CrossRefGoogle Scholar
  6. [6]
    Wang, L., Yang, P.: Nanostructured scaffold and its bioactive potentials in bone tissue engineering. In: Nanobiomaterials in hard tissue engineering: Applications of nanobiomaterials (Ed.: A. Grumezescu), Elsevier (2016), 241–270. ISBN: 9780323428620CrossRefGoogle Scholar
  7. [7]
    Gupta, P., Elkins, C., Long, T., Wilkes, G.: Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46 (2005) [13] 4799–4810CrossRefGoogle Scholar
  8. [8]
    Xu, C.Y., Inai, R., Kotaki, M., Ramakrishna, S.: Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomater. 25 (2004) [5] 877–886CrossRefGoogle Scholar
  9. [9]
    Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomater. 26 (2005) [15] 2603–2610CrossRefGoogle Scholar
  10. [10]
    Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B., Chu, B.: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43 (2002) [16] 4403–4412CrossRefGoogle Scholar
  11. [11]
    Sorour, M.H., El-Rafei, A., Hani, H.A.: Synthesis and characterization of electrospun aluminum doped Li1.6Mn1.6O4 spinel. Ceram. Inter. 42 (2016) [4] 4911–4917CrossRefGoogle Scholar
  12. [12]
    Ibrahim, S., Sayed, H.M., El-Rafei, A., El Amir, A., Ismail, M., Allam, N.K.: Improved genistein loading and release on electrospun chitosan nanofiber blends. J. Molecul. Liqui. 223 (2016) 1056–1061CrossRefGoogle Scholar
  13. [13]
    Zhong, S., Teo, W.E., Zhu, X., Beuerman, R.W., Ramakrishna, S., Yung, L.Y.: An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J. Biomed. Mater. Res. A79 (2006) [3] 456–463CrossRefGoogle Scholar
  14. [14]
    Boudriot, U., Dersch, R., Greiner, A., Wendorff, J.H.: Electrospinning approaches toward scaffold engineering: A brief overview. Artif. Organs 30 (2006) [10] 785–792CrossRefGoogle Scholar
  15. [15]
    Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12 (2006) [5] 1197–1211CrossRefGoogle Scholar
  16. [16]
    Murugan, R., Ramakrishna, S.: Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tissue Eng. 12 (2006) [3] 435–447CrossRefGoogle Scholar
  17. [17]
    Mohamed, K.R., Mostafa, A.A.: Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Mater. Sci. and Eng. C. 28 (2008) [7] 1087–1099CrossRefGoogle Scholar
  18. [18]
    Adams, B.R., Mostafa, A., Schwartz, Z., Boyan, B.D.: Osteoblast response to nanocrystalline calcium hydroxyapatite depends on carbonate content. J. Biomed. Mater. Res. Part A. 102 (2014) [9] 3237–3242CrossRefGoogle Scholar
  19. [19]
    Abdel-Aziz, M.S., Hezma, A.: Spectroscopic and antibacterial evaluation of nano-hydroxapatite polyvinyl alcohol biocomposite doped with microbial-synthesized nanogold for biomedical applications. Polymer-Plastics Technol. and Eng. 52 (2013) [14] 1503–1509CrossRefGoogle Scholar
  20. [20]
    Gimenez, V., Mantecon, A., Cadiz, V.: Modification of poly(vinyl alcohol) with acid chlorides and crosslinking with difunctional hardeners. J. Polym. Sci. Part A: Polymer Chemistry 34 (1996) [6] 925–934CrossRefGoogle Scholar
  21. [21]
    El-Bahy, G.S., Abdelrazek, E.M., Allam, M.A., Hezma, A.M.: Characterization of in situ prepared nano-hydroxyapatite/polyacrylic acid (HAp/PAAc) biocomposites. J. Appl. Polym. Sci. 122 (2010) 3270–3276CrossRefGoogle Scholar
  22. [22]
    Fu, S.-Y., Feng, X.-Q., Lauke, B., Mai, Y.-W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B: Eng. 39 (2008) [6] 933–961CrossRefGoogle Scholar
  23. [23]
    Laine, R.M., Choi, J., Lee, I.: Organic-inorganic nanocomposites with completely defined interfacial interactions. Adv. Mater. 13 (2001) [11] 800–803CrossRefGoogle Scholar
  24. [24]
    El-Rafei, A.: Optimization of the electrospinning parameters of Mn2O3 and Mn3O4 nanofibers. Ceram. Inter. 41 (2015) [9] 12065–12072CrossRefGoogle Scholar
  25. [25]
    Kim, H.-M., Himeno, T., Kawashita, M., Kokubo, T., Nakamura, T.: The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: An in vitro assessment. J. Roy. Soc. Interface 1 (2004) [1] 17–22CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • A. M. Hezma
    • 1
    Email author
  • A. M. El-Rafei
    • 2
  • G. S. El-Bahy
    • 1
  • Abdelrazek B. Abdelrazzak
    • 1
  1. 1.Spectroscopy Department, Physics DivisionNational Research CenterDokki, CairoEgypt
  2. 2.Refractories, Ceramics and Building Materials DepartmentNational Research CenterDokki, CairoEgypt

Personalised recommendations