ZTA Composite Containing 2.5 Vol.-% SiC: Densification and Characterization

  • S. M. NagaEmail author
  • M. Elgamhoudy
  • H. F. El-Maghraby
  • A. I. Fayed
High-Performance Ceramics


The densification behavior of 2.5 vol.-% SiC/ZTA composites was evaluated. The results showed that the prepared composites are well densified at 1600°C. The phase composition, microstructure, and mechanical properties of the sintered composites were investigated. All the mechanical properties were enhanced by the addition of SiC.


ZTA composites mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Rajendran, S., Swain, M.V., Rossell, H.J.: Mechanical properties and microstructure of co-precipitated derived tetragonal Y2O3-ZrO2-Al2O3 composites. J. Mater. Sci. 23 (1988) 1805–1812CrossRefGoogle Scholar
  2. [2]
    Lin, G.Y., Lei, T.C.: Microstructure, mechanical properties and thermal shock behavior of Al2O3 + ZrO3 + SiCw composites. Ceram. Int. 24 (1998) 313–326CrossRefGoogle Scholar
  3. [3]
    Fang, J., Thompson, A.M., Harmer, M.P., Chan, H.M.: Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina. J. Am. Ceram. Soc. 80 (1997) 2005–2012CrossRefGoogle Scholar
  4. [4]
    Laren, I.M., Cannon, R.M., Gügün, M.A., Voytovych, R., Popescu, N.P., Scheu, C., Tüffnen, U., Rühle, M.: Abnormal grain growth in alumina: Synergistic effects of yttria and silica. J. Am. Ceram. Soc. 86 (2003) 650–659CrossRefGoogle Scholar
  5. [5]
    Yazdi, A.R., Baharvandi, H.R., Abdizadeh, H., Ehsani, N.: Study of mechanical properties and fracture mode of alumina-silicon carbide nanocomposites. Inter. J. Modern Phy., Conference Series 5 (2012) 551–558Google Scholar
  6. [6]
    Shi, X.L., Xu, F.M., Zhang, Z.J., Dong, Y.L., Tan, Y., Wang, L., Yang, J.M.: Mechanical properties of hot-pressed Al2O3/SiC composites. Mater. Sci. Eng. A. 527 (2010) 4646–4649CrossRefGoogle Scholar
  7. [7]
    Choa, Y.H., Nakahira, A., Nihara, K.: Microstructure and mechanical properties of SiC-platelet Al2O3/SiC-particle hybrid composites. J. Mater. Sci. 35 (2000) 3143–3149CrossRefGoogle Scholar
  8. [8]
    Sciti, D., Vicens, J., Bellosi, A.: Microstructure and mechanical properties of alumina-SiC nanocomposite prepared from ultrafine powders. J. Mater. Sci. 37 (2002) 3747–3758CrossRefGoogle Scholar
  9. [9]
    Bamba, N., Choa, Y.H., Sekino, T.: Microstructure and mechanical properties of yttria stabilized zirconia/silicon carbide nanocomposites. J. Eur. Ceram. Soc. 18 (1998) 693–699CrossRefGoogle Scholar
  10. [10]
    Lucchini, E., Maschio, S.: Processing and mechanical properties of SiC-whiskers-reinforced Al2O3-ZrO2 composites. J. Mater. Sci. Lett. 9 (1999) 417–419CrossRefGoogle Scholar
  11. [11]
    Wang, H.Z., Gao, L., Guo, J.K.: Fabrication and microstructure of Al2O3-ZrO2 (3Y)-SiC nanocomposites. J. Euro. Ceram. Soc. 19 (1999) 2125–2131CrossRefGoogle Scholar
  12. [12]
    Ryabkov, Y.I., Sitnikov, P.A.: Conditions for preparation of oxide components and their effect on properties of Al2O3-ZrO2-SiC composite. Refr. Indust. Ceram. 44 (2003) 115–118CrossRefGoogle Scholar
  13. [13]
    Liu, S.Y., Wang, Y., Zhou, C., Pan, Z.Y.: Mechanical properties and tribological behavior of alumina/zirconia composites modified with SiC and plasma treatment. Wear 332–333 (2015) 885–890CrossRefGoogle Scholar
  14. [14]
    Zhang, X.P., Ouyang, J.H., Wang, Y.J., Liu, Z.G., Wang, Y.M.: Microstructure and high-temperature mechanical properties of ZrO2-Al2O3-SiC ceramics. J. Mater. Eng. Perform. 24 (2015) 3615–3621CrossRefGoogle Scholar
  15. [15]
    Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, B.D.: A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurement. J. Am. Ceram. Soc. 64 (1981) 533–538CrossRefGoogle Scholar
  16. [16]
    Nishida, T., Hanaki, Y., Pezzotti, G.: Effect of notch-root radius on the fracture toughness of a fine-grained alumina. J. Am. Ceram. Soc. 77 (2006) 606–608CrossRefGoogle Scholar
  17. [17]
    Borsa, C.E., Ferreira, H.S., Kiminami, R.: Liquid phase sintering of Al2O3/SiC nanocomposites. J. Eur. Ceram. Soc. 19 (1999) 615–621CrossRefGoogle Scholar
  18. [18]
    Sun, J., Iwasa, M., Nakayama, T., Niihara, K., Gao, L., Jin, X.: Pressureless sintering of alumina carbon nanotubes composites in air atmosphere furnace and their mechanical properties. J. Ceram. Soc. Jpn. 112 (2004) 403–406Google Scholar
  19. [19]
    Dong, Y.L., Xu, F.N., Shi, X.L., Zhang, C., Zhang, Z.J., Yang, J.M., Tan, Y.: Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites. Mater. Sci. Eng. A. 504 (2009) 49–54CrossRefGoogle Scholar
  20. [20]
    Levin, I., Kaplan, W.D., Brandon, D.G., Layyous, A.A.: Effect of SiC submicrometer particle size and content on fracture toughness of alumina-SiC nanocomposites. J. Am. Ceram. Soc. 78 (1995) 254–256CrossRefGoogle Scholar
  21. [21]
    Ohji, T., Jeong, Y.K., Choa, Y.H., Niihara, K.: Strengthening and toughening mechanisms of ceramic nanocomposites. J. Am. Ceram. Soc. 81 (1998) 1453–60CrossRefGoogle Scholar
  22. [22]
    Parchoviandky, M., Galusek, D., Sedlacek, J., Svancarek, P., Kasiarova, M., Dusza, J., Sajgalik, P.: Microstructure and mechanical properties of hot pressed Al2O3/SiC nanocomposites. J. Eur. Ceram. Soc. 33 (2013) 2291–2298CrossRefGoogle Scholar
  23. [23]
    Soh, A.K., Fang, D.N., Dong, Z.X.: Analysis of toughening mechanism of ZrO2/nano SiC ceramic composites. J. Composite Mater. 38 (2004) 227–240CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • S. M. Naga
    • 1
    Email author
  • M. Elgamhoudy
    • 2
  • H. F. El-Maghraby
    • 1
  • A. I. Fayed
    • 3
  1. 1.Ceramics DepartmentNational Research CentreDokki, CairoEgypt
  2. 2.MTCNational Research CentreCairoEgypt
  3. 3.MTINational Research CentreCairoEgypt

Personalised recommendations