Advertisement

Interceram - International Ceramic Review

, Volume 65, Issue 7, pp 41–46 | Cite as

Evaluation of Refractory Performance of Basic Castables Containing Magnesium-Aluminate Sol-Gel Coatings on Graphite

  • P. Das
  • S. BasuMallick
  • P. Maity
  • S. Palit
  • S. Ghosh
  • S. Mukhopadhyay
Review Papers
  • 4 Downloads

Abstract

A study was conducted to compare the properties of carbon-containing basic castables that incorporated graphite with and without a magnesium! aluminate sol-gel coating. A thin sol-gel coating of magnesium aluminate spinel was prepared from inexpensive precursors. The castable batch containing hydrophilic coated graphite required less water (9.5 mass-%) for mixing than the uncoated graphite (12.5 mass-%). Basic cartable containing coated graphite showed better retention of graphite mside its refractory matrix. Consequently, slag corrosion and penetration resistance were noticeably improved in the coated graphite sample. X-ray diffraction, scanning electron microscopy and investigation of physical properties were performed on the castables at different temperatures to confirm the benefits of spinel-coated graphite.

Keywords

basic castable graphite sol-gel coating slag corrosion spinel (MgAl2O4

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lee, W.E., Moore, R.E.: Evolution of in situ refractories in the 20th century. J. Amer. Ceram. Soc. 81 (1998) [6] 1385–1410CrossRefGoogle Scholar
  2. [2]
    Ewais, E.M.M.: Carbon based refractories.J. of the Ceram. Soc. of Japan 112 (2004) [1310] 517–532CrossRefGoogle Scholar
  3. [3](a)
    Baudin, C., Alvarez, C., Moore, R.E.: Influence of chemical reactions in magnesia-graphite refractories: 1. Effects of texture and high temperature mechanical properties.J. Amer. Ceram. Soc. 82 (1999) [12] 3529–3538CrossRefGoogle Scholar
  4. [3](b)
    Ibid: 2. Effects of aluminium and graphite contents in generic products. J. Amer. Ceram. Soc. 82 (1999) [12] 3539–3548CrossRefGoogle Scholar
  5. [4]
    De Aza, A.H., Valle, W.F.J., Ortega, Pena, P., DeAza, S.: Analytical characterization of a magnesia-graphite refractory. J. Amer. Ceram. Soc. 89 (2006) [5] 1704–1708CrossRefGoogle Scholar
  6. [5]
    Fruhwrith, O., Herzog, G.W., Hollerer, I., Rachetti, A.: Dissolution and hydration kinetics of MgO. Surface Technology 24 (1985) 301–317CrossRefGoogle Scholar
  7. [6]
    Salomao, R., Bittencourt, L.R.M., Pandolfelli, V.C.: A novel approach for magnesia hydration assessment in refractory castables. Ceram. Internat. 33 (2007) 803–810CrossRefGoogle Scholar
  8. [7]
    Yamaguchi, A.: Features and future development of the carbon containing refractory. Key Engg. Mats. (Adv. Ceramics and Composites) 247 (2003) 239–244, Trans. Tech. Publication, SwitzerlandGoogle Scholar
  9. [8]
    Zhang, S., Lee, W.E.: Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings. J. Europ. Ceram. Soc. 23 (2003) 1215–1221CrossRefGoogle Scholar
  10. [9]
    Mukhopadhyay, S., Dutta, S., Ansar, S.A., Das, S., Misra, S.: Spinel-coated graphite for carbon containing refractory castables. J. Amer. Ceram. Soc. 92 (2009) [8] 1895–1900CrossRefGoogle Scholar
  11. [10]
    Mukhopadhyay, S.: Improved sol-gel spinel (MgAl2O4) coatings on graphite for application in carbon containing high alumina castables. J. Sol-Gel Sci. Technol. 56 (2010) 66–74CrossRefGoogle Scholar
  12. [11]
    Mukhopadhyay, S., Ansar, S.A., Paul, D., Bhowmick, G., Sengupta, S.: Characteristics of refractory castables containing mullite and spinel coated graphites. Mater. Manuf. Process. 27 (2012) 177–184CrossRefGoogle Scholar
  13. [12]
    Dutta, S., Das, P., Das, A., Modak, S., Mukhopadhyay, S.: Physical characteristics of alumina-carbon refractory castables containing calcium aluminate coated graphites. Interceram-Refractories Manual 62 (2013) [4] 294–298Google Scholar
  14. [13]
    Mukhopadhyay, S., Das, G., Biswas, I.: Nanostructured cementitious sol-gel coating on graphite for application in monolithic refractory composites. Ceram. Internat. 38 (2012) 1717–1724CrossRefGoogle Scholar
  15. [14]
    Mukhopadhyay, S., Dutta, S.: Comparison of solid state and sol-gel derived calcium aluminate coated graphite and characterization of prepared refractory composite. Ceram. Internat. 38 (2012) 4997–5006CrossRefGoogle Scholar
  16. [15]
    Dutta, S., Das, P., Das, A., Mukhopadhyay, S.: Significant improvement of refractoriness of Al2O3-C castables containing calcium aluminate nano-coatings on graphite. Ceram. Internat. 40 (2014) 4407–4414CrossRefGoogle Scholar
  17. [16]
    Mukhopadhyay, S.: Nanoscale calcium aluminate coated graphite for improved performance of alumina based monolithic refractory composite. Mat. Res. Bull. 48 (2013) 2583–2588CrossRefGoogle Scholar
  18. [17]
    Mukhopadhyay, S., Mondal, C., Chakraborty, A., Mali, D., Ghosh, S.: In depth studies on cementitious nanocoatings on graphite for its contribution in corrosion resistance of alumina based refractory composite. Ceram. Internat. 41 (2015) 11999–12010CrossRefGoogle Scholar
  19. [18]
    Mukhopadhyay, S., DasPoddar, P.K.: Effect of preformed and in situ spinels on microstructure and properties of a low cement refractory castable. Ceram. Internat. 30 (2004) [3] 369–380CrossRefGoogle Scholar
  20. [19]
    DasPoddar, D., Mukhopadhyay, S.: Spinel-bonded basic castables in relation to spinel forming agents. Interceram 51 (2002) [4] 282–288Google Scholar
  21. [20]
    Mukhopadhyay, S., Ghosh, S., Mahapatra, M.K., Mazumder, R., Barick, P., Gupta, S., Chakraborty, S.: Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultralow cement castable. Ceram. Internat. 28 (2002) [7] 719–729CrossRefGoogle Scholar
  22. [21]
    Sako, E.Y., Braulio, M.A.L., Pandolfelli, V.C.: The corrosion and microstructure relationship for cement-bonded spinel refractory castables. Ceram. Internat. 38 (2012) 2177–2185CrossRefGoogle Scholar
  23. [22]
    Szczerba, J., Prorok, R., Sniezek, E., Madej, D., Maslona, K.: Influence of time and temperature on ageing and phase analysis in the MgO-SiO2-H2O system. Thermochimica Acta 567 (2013) 57–64CrossRefGoogle Scholar
  24. [23]
    Duran, T., Pena, P., De Aza, S., Millan, J.G., Alvarez, M., De Aza, A.H.: Interactions in Calcium Aluminate Cement (CAC)-Based Castables containing Magnesia, Part II: Hydration-Dehydration Behavior of CAC and their Mixtures with Dead-Burned and Reactive-Grade MgO. J. Amer. Ceram. Soc. 94 (2011) [3] 909–917CrossRefGoogle Scholar
  25. [24](a)
    Sako, E.Y., Braulio, M.A.L., Pandolfelli, V.C.: Microstructural evolution of magnesia-based castables containing microsilica. Ceram. Internat. 38 (2012) 6027–6033CrossRefGoogle Scholar
  26. [24]b)
    Souza, T.M., Braulio, M.A.L., Luz, A.P., Bonadia, P., Pandolfelli, V.C.: Systematic analysis of MgO hydration effects on alumina-magnesia refractory castables. Ceram. Internat. 38 (2012) 3969–3976CrossRefGoogle Scholar
  27. [25]
    Salomao, R., Pandolfelli, V.C.: The role of hydraulic binders on magnesia containing refractory castables: calcium aluminate cement and hydratable alumina. Ceram. Internat. 35 (2009) 3117–3124CrossRefGoogle Scholar
  28. [26]
    Vandchali, M.V., Sarpoolaky, H., Golestani-Fard, F., Rezaie, H.R.: Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO-C refractories matrix. Ceram. Internat. 35 (2009) 861–868CrossRefGoogle Scholar
  29. [27]
    Vandchali, M.V., Sarpoolaky, H., Golestani-Fard, F., Rezaie, H.R., Aneziris, C.G.: The influence of in situ spinel formation on microstructure and phase evolution of MgO-C refractories. J. Europ. Ceram. Soc. 28 (2008) 563–569CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • P. Das
    • 1
  • S. BasuMallick
    • 1
  • P. Maity
    • 1
  • S. Palit
    • 1
  • S. Ghosh
    • 1
  • S. Mukhopadhyay
    • 1
  1. 1.Dept. of Chemical Technology (Ceram. Eng. Div.)University of CalcuttaKolkata-9India

Personalised recommendations