Advertisement

Interceram - International Ceramic Review

, Volume 65, Issue 7, pp 35–40 | Cite as

Self-Propagating High-Temperature Synthesis of ZrB2-Al2O3 Composite Powders: The Roles of Raw Material Ratios

  • G. Q. Xiao
  • W. Zhang
  • D. H. Ding
  • Y. Ren
  • Q. Li
  • P. Yang
Review Papers

Abstract

ZrB2-Al2O3 composite powders were prepared by self-propagating high-temperature synthesis (SHS) using different raw material ratios. The phase constituents and microstructure of the final product were examined by X-ray Diffraction (XRD) and Field-Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectrometry (EDS). The results showed that ZrB2 and Al2O3 are only contained in the final product and the content of ZrB2 is the highest when the raw material mole ratio of ZrO2: B2O3: Al is 3 : 3 : 11.5. Unreacted ZrO2 remains in products prepared using raw materials with stoichiometric ratio and with excessive B2O3. The ZrB2 content decreases and then increases with increasing B2O3, while crystal grain diameter (D) and distance of crystal face (d) behaves in the opposite manner. A eutectic structure was formed in the local region of product prepared with a stoichnometric ratio.

Keywords

ZrB2-Al2O3 powders self-propagating high-temperature synthesis X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mishra, S.K., Das, S.K., Pathak, V.S.: Effect of titanium diluent on the fabrication of Al2O3-ZrB2 composite by SHS dynamic compaction. Comp. Sci. Technol. 67 (2007) 2447–2453CrossRefGoogle Scholar
  2. [2]
    Jung, S.H., Oh, H.C., Kim, J.H., Choi, S.C., Lee, S.H., Kim, H.D.: Pretreatment of zirconium diboride powder to improve densification. J. Alloys Compd. 548 (2013) 173–179CrossRefGoogle Scholar
  3. [3]
    Khanra, A.K.: Reaction chemistry during self-propagating high-temperature synthesis (SHS) of H3BO3-ZrO2-Mg system. Mater. Res. Bull. 42 (2007) 2224–2229CrossRefGoogle Scholar
  4. [4]
    Mashra, S.K., Das, S.K., Sherbacov, V.: Fabrication of Al2O3-ZrB2 in situ composite by SHS dynamic compaction: A novel approach. Comp. Sci. and Technol. 67 (2007) 2247–2453Google Scholar
  5. [5]
    Jamal Abbasi, B., Zakeri, M., Tayebifard, S.A.: Mechanochemical synthesis of Al2O3-ZrB2-ZrO2 nanocomposite powder. Mater. Res. Bull. 49 (2014) 672–676CrossRefGoogle Scholar
  6. [6]
    Sayagués, M.J., Avilés, M.A., Córdoba, J.M., Gotor, F.J.: Self-propagating combustion synthesis via an MSR process: An efficient and simple method to prepare (Ti, Zr, Hf)B2-Al2O3 powder nanocomposite). Powder Techn. 256 (2014) 244–250CrossRefGoogle Scholar
  7. [7]
    Mishra, S.K., Bhople, A., Paswan, S.: Microstructure, hardness, toughness and oxidation resistance of Al2O3-ZrB2 composite with different Ti percentages prepared by in-situ SHS dynamic compaction. J. Refractory Met. and Hard Mater. 43 (2014) 7–12CrossRefGoogle Scholar
  8. [8]
    Li, L., Hong, Y.R., Sun, J.L., He, Z.Y., Peng, X.Y.: Formation of ZrB2 in MgO-C Composite Materials Using In-situ Synthesis Method. J. Iron Steel Res. Int. 13 (2006) [1] 70–74CrossRefGoogle Scholar
  9. [9]
    Postrach, S., Pötschke, J.: Pressureless sintering of Al2O3 containing up to 20 vol-% zirconium diboride (ZrB2). J. Eur. Ceram. Soc. 20 (2000) 1459–1468CrossRefGoogle Scholar
  10. [10]
    Feng, C.F., Froyen, L.: In-situ P/M Al/(ZrB2+Al2O3) MMCs: Processing, microstructure and mechanical characterization. Acta Mater. 47 (1999) 4571–4583CrossRefGoogle Scholar
  11. [11]
    Li, B., Deng, J.X., Wu, Z.: Effect of cutting atmosphere on dry machining performance with Al2O3/ZrB2/ZrO2 ceramic tool. Int. J. Adv. Manuf. Technol. 49 (2010) 459–467CrossRefGoogle Scholar
  12. [12]
    Li, B., Deng, J.X.: Addition of Zr-O-B compounds to improve the performances of alumina matrix ceramic materials. J. Alloys Comp. 473 (2009) 190–194CrossRefGoogle Scholar
  13. [13]
    Li, B., Deng, J.X., Li, Y.S.: Oxidation behavior and mechanical properties degradation of hot-pressed Al2O3/ZrB2/ZrO2 ceramic composites. Int. J. Refract. Met. Hard Mater. 27 (2009) 747–753CrossRefGoogle Scholar
  14. [14]
    Yang, H.J., Zhao, Y.T., Chen, G., Zhang, S.L., Chen, D.B.: Preparation and microstructure of in-situ (ZrB2+Al2O3+Al3Zr)p/A356 composite synthesized by melt direct reaction Trans. Nonferrous Met. Soc. China 22 (2012) 571–576CrossRefGoogle Scholar
  15. [15]
    Zhao, Y.T., Zhang, S.L., Chen, G., Cheng, X.N., Dai Q.X.: (ZrB2+Al2O3+Al3Zr)p/Al-4Cu composite synthesized by magneto-chemical melt reaction. Mater. Sci. Eng. A 487 (2008) 1–6CrossRefGoogle Scholar
  16. [16]
    Merzhanov, A.G., Borovinskaya, I.P.: A new class of combustion processes. Combust. Sci. Technol. 10 (1975) 195–201CrossRefGoogle Scholar
  17. [17]
    Mishra, S.K., Das, S.K., Ramachandrarao, P., Belov, D.Y., Mamyan, S.: Synthesis of zirconium diboride-alumina composite by the self-propagating high-temperature synthesis process. Metall. Mater. Trans. A 34 (2003) [9] 1979–1983CrossRefGoogle Scholar
  18. [18]
    Mishra, S.K., Das, S.K., Pathak, L.C.: Sintering behaviour of self-propagating high temperature synthesized ZrB2-Al2O3 composite powder. Mat. Sci. and Eng. A 426 (2006) 229–234CrossRefGoogle Scholar
  19. [19]
    Xiao, G.Q., Fu, Y.L., Zhang, Z.W., Hou, A.D.: Mechanism and microstructure evolution of combustion synthesis of ZrB2-Al2O3 composite powders. Ceram. Int. 41 (2015) 5790–5797CrossRefGoogle Scholar
  20. [20]
    Li Lin, Hong Yanruo, Sun Jialin, He Zhiyong, Peng Xiaoyan: Formation of ZrB2 in MgO-C composite materials using in-situ synthesis method. J. Iron and Steel Res. 13 (2006) [1] 70–74CrossRefGoogle Scholar
  21. [21]
    Shen, P., Sun, W.H., Zou, B.L.: Al content dependence of reaction behavior and mechanism in combustion synthesis of TiB2-AlN-based composites. Chem. Eng. J. 1 (2009) [150] 261–268CrossRefGoogle Scholar
  22. [22]
    Cui Bo: Mechanism and process of explosive synthesis of Al2O3/ZrO2 eutectic ceramics. Master Thesis: Harbin Institute of Technology, China (2010)Google Scholar
  23. [23]
    Yu Zhou, Tingquan Lei: Ceramic materials. Harbin: Harbin Institute of Technology Press, (1995) 173Google Scholar
  24. [24]
    Zhao, Z.M., Wang. J.J.: SHS Fabrication and microstructure of Al2O3/ZrO2 composite ceramic with nano-micron scale by SHS process. Foundry 52 (2003) [11] 1053–1057Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • G. Q. Xiao
    • 1
  • W. Zhang
    • 1
  • D. H. Ding
    • 1
  • Y. Ren
    • 1
  • Q. Li
    • 1
  • P. Yang
    • 1
  1. 1.College of Materials and Mineral ResourcesXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations