Advertisement

Interceram - International Ceramic Review

, Volume 65, Issue 4–5, pp 179–186 | Cite as

Comparison of the Electrical Properties for Undoped and Doped Indium Tin Oxide with Nanometal Oxides

  • A. H. Salama
  • A. M. Youssef
  • H. A. Abbas
  • F. F. Hammad
High-Performance Ceramics
  • 2 Downloads

Abstract

This work represents the electrical properties of undoped Indium Tin Oxide (ITO) (90 : 0) and doped ITO with 6 mass-% of nano-Zr, Cr and Cu. X-ray diffraction (XRD) analysis confirmed that there are no phases for tin oxide or other impurities. The undoped ITO has single cubic bixbyite structure. The particle size of all the prepared samples are in the nano range (19–33nm), which was confirmed by transmission electron microscopy (TEM) images of the samples. The dielectric properties such as dielectric constant ε and dielectric loss ε were measured as a function of temperature from room temperature to 773°K and frequency varying from 50 Hz to 5 MHz. The dielectric constant values increase with the increase of both temperature and frequency. Moreover, it was found that dielectric loss ε decreases with frequency increasing at all temperatures. This is explained by the fact that as frequency is raised, the interfacial dipoles have less time to orient themselves in the direction of the alternating field. The frequency-dependent AC conductivity follows the power law exponents if the exponent is less than unity and decrease a little with increasing temperature. The power law dependence of the AC conductivity on frequency corresponds to hopping of carriers through traps sites separated by an energy barrier of various heights.

Keywords

ITO nanopowder dielectric constant dielectric loss AC conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chau, R., Brask, J., Datta, S., Dewey, G., Doczy, M., Doyle, B., Kavalieros, J., Jin, B., Metz, M., Majumdar, A., Radosavljevic, M.: Application of high-k gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology. Microelectronic Engineering. 80 (2005) 1–6CrossRefGoogle Scholar
  2. [2]
    Cava, R.J.: Dielectric materials for applications in microwave communications. J. Mater. Chem 11 (2001) 54–62CrossRefGoogle Scholar
  3. [3]
    Fiedziuzko, S.J., Hunter, I.C., Itoh, T., Kobayashi, Y., Nishikawa, T., Stitzer, S.N., Wakio, K.: Dielectric materials, devices and circuits. IEEE Trans. Microwave Theory and Tech. 50 (2002) 706–720CrossRefGoogle Scholar
  4. [4]
    Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20 (2005) [4]CrossRefGoogle Scholar
  5. [5]
    Lewis, B.G., Paine, D.C.: Application and processing of transparent conducting oxides. MRS Bull. 25 (2000) 22CrossRefGoogle Scholar
  6. [6]
    Pichot, F., Ferrere, S., Pitts, R.J., Gregg, B. A.: Flexible solid state photoelectrochromic windows. J. Electrochem. Soc. 146 (1999) [11] 4324–4326CrossRefGoogle Scholar
  7. [7]
    Granqvist, C.G., Hultaker, A.: Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411 (2002) [1] 1–5CrossRefGoogle Scholar
  8. [8]
    Xu, C.Y., Liu, L., Legenski, S.E., Ning, D., Taya, M.: Switcable window based on electrochomic polymers. J. Mater. Res. 19 (2004) [7] 2072–2080CrossRefGoogle Scholar
  9. [9]
    Gheidari, A.M., Soleimani, E.A., Mansorhoseini, M., Mohajerzadeh, S., Madani, N., Kolahi, W.S.: Structural properties of indium tin oxide thin films prepared for applications in solar cells. Mater. Res. Bull. 40 (2005) [8] 1303–1307CrossRefGoogle Scholar
  10. [10]
    Yu, H.H., Hwang, S.J., Tseng, M.C., Tseng, C.C.: The effect of ITO films thickness on the properties of flexible organic light emitting diode. Opt. Commun. 259 (2006) [1] 187–193CrossRefGoogle Scholar
  11. [11]
    Vaishnav, V.S., Patel, P.D., Patel, N.G.: Preparation and characterization of indium tin oxide thin films for their applications as gas sensor. Thin Solid Films 487 (2005) [1–2] 277–282CrossRefGoogle Scholar
  12. [12]
    Forleo, A., Francioso, L., Epifani, M., Capone, S., Taurino, A.M., Siciliano, P.: NO2-gas sensing properties of mixed In2O3-SnO2 thin films. Thin Solid Films 490 (2005) [1] 68–73CrossRefGoogle Scholar
  13. [13]
    Mirzaee, M., Dolati, A.: Effect of Cr doping on the structural, morphological, optical and electrical properties of indium tin oxide films. Appl. Phys. A 118 (2015) 953–960CrossRefGoogle Scholar
  14. [14]
    Asikainen, T., Ritala, M., Leskela, M.: Atomic layer deposition growth of zirconium doped In2O3 films. Thin Solid Films 440 (2003) 152CrossRefGoogle Scholar
  15. [15]
    Swanson, H.E., Fuyat, r.K., Ugrinic, G.M.: Standard X-ray diffraction powder patterns. Natl. Bur. Stand. (U.S), Circ. 539 (1955) [3] 29Google Scholar
  16. [16]
    Nadaud, N., Lequeux, N., Nanot, M., Jove, J., Roisnel, T.: Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12. J. Solid State Chem. 135 (1998) [1] 140–148CrossRefGoogle Scholar
  17. [17]
    Rehwald, W., Kiess, H., Bingelli, B.: Frequency dependent conductivity in polymers and other disordered materials. Z. Phys. B., Cond. Matter. 68 (1987) 143–148CrossRefGoogle Scholar
  18. [18]
    Smith, D.R., Schuttz, S., Markos, P., Soukoulis, C.M.: Determination of effective permittivity and permeability of meta-materials from reflection and transmission coefficients. Phys. Rev. B 65 (2002) 195104CrossRefGoogle Scholar
  19. [19]
    Lin, Y.Q., Chen, X.M.: Dielectric relaxation and polaronic conduction in double perovskite La2MgMnO6. Appl. Phys. Letts. 96 (2010) [1] 142902CrossRefGoogle Scholar
  20. [20]
    Ghosh, A., Bhallacharya, S., Ghosh, A.: Tunneling of large polaron in semiconducting zinc vanadate glasses. J. of Phys. Condensed Matter. 21 (2009) [14] 145802CrossRefGoogle Scholar
  21. [21]
    Suchanicz, J.: Behavior of Na0.5Bi0.5TiO3 ceramics in the ac electric field. Ferroelectrics 209 (1998) [1] 561–568CrossRefGoogle Scholar
  22. [22]
    Pike, G.E.: Ac-conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. B 6 (1972) 1572–1580CrossRefGoogle Scholar
  23. [23]
    Elliott, S.R.: A theory of ac conductivity in chalcogenide glasses. Phil. Mag. 36 (1977) [6] 1291–1304CrossRefGoogle Scholar
  24. [24]
    Elliott, S.R.: Ac conduction in amorphous chalcogenide and pnicide semiconductors. Adv. Phys. 36 (1987) 135–218CrossRefGoogle Scholar
  25. [25]
    Long, A.R.: Frequency — dependent loss in amorphous semiconductors. Adv. Phys. 31 (1982) 553–637CrossRefGoogle Scholar
  26. [26]
    Gauckler, I.J., Sasaki, K.: Ionic and electronic conductivities of homogenous and heterogenous materials in the system ZrO2-In2O3. Solid State Ionics 75 (1995) 203–210CrossRefGoogle Scholar
  27. [27]
    Prasad, K., Suman, C.K., Choudhary, R.N.P.: Studies on dielectric responses of Pb2Bi3RTi5O18 (R = La, Nd, Sm, Gd, Dy) ceramics. Ferroelectrics 324 (2005) [1] 89–94CrossRefGoogle Scholar
  28. [28]
    Kumar, M.P., Saukarappa, T., Kumar, S.: AC-conductivity studies in rare earth ions doped vanadotellurite glasses. J. Alloys Compd. 464 (2008) [1/2] 393CrossRefGoogle Scholar
  29. [29]
    Kumar, R.S., Haran, K.: AC-conductivity and electrical relaxation studies on 10CuI-60AgI-30V2O5 glasses. Mat. Chem. Phys. 60 (1999) (11–28)Google Scholar
  30. [30]
    Bergo, P., Pontuschka, W.M., Prison, J.M., et al.: Dielectric properties of barium phosphate glasses doped with transition metal oxides. J. Non-Cryst. Solids 348 (2004) 84CrossRefGoogle Scholar
  31. [31]
    Sattar, A.A., Rahman, S.A.: Dielectric properties of rare earth substituted Cu-Zn ferrites. Phys. Stat. Sol. A 200 (2003) [2] 415–422CrossRefGoogle Scholar
  32. [32]
    Maurya, D., Kumar, J., Shripal.: Dielectric spectroscopic and ac-conductivity studies on layered Na2−xKxTi3O7 (x = 0.2, 0.3, 0.4) ceramics. J. Phys. Chem. Solids. 66 (2005) [10] 1614–1620CrossRefGoogle Scholar
  33. [33]
    Maity, S., Bhattacharya, D., Ray, S.K.: Structural and impedance spectroscopy of pseudo-Co-ablated (SrBi2Ta2O9)(1−x) (La0.67Sr0.33MnO3)x composite. J. Phys. D.: Appl. Phys. 44 (2011) 095403CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • A. H. Salama
    • 1
  • A. M. Youssef
    • 1
  • H. A. Abbas
    • 1
  • F. F. Hammad
    • 1
  1. 1.Department of Physical Chemistry, Inorganic Chemical Industries and Mineral Resources DivisionNational Research CentreGizaEgypt

Personalised recommendations