Interceram - International Ceramic Review

, Volume 65, Issue 3, pp 106–110 | Cite as

Microwave Synthesis of CoxMg1−xAl2O4 Seed for Pigment Application

  • R. M. KhattabEmail author
  • H. E. H. Sadek
  • A. A. Gaber
High-Performance Ceramics


The aim of this work is to synthesize the seeds of CoxMg1−xAl2O4 nano-spinel particles for pigment fabrication using a microwave-assisted method. Also, we report on a novel, less toxic, flexible, and reproducible microwave-assisted method for starch-based synthesis of spinels. Furthermore, substantial efforts were devoted to obtaining a nanopowder while reducing total synthesis time from many hours to a few minutes. The obtained powders were characterized by XRD, FT-IR, TEM, and EDSA techniques. The results show that CoxMg1−xAl2O4 spinel is in an amorphous form after microwave treatment at 1000 W with particle sizes of less than 20 nm and that spinel first began to crystallize at a temperature of 550°C.


ceramics microwave nanopowder spinel pigment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Torkian, L., Daghighi, M., Boorboor, Z.: Polymeric precursor route for the synthesis of nanosized CoxMg1−xAl2O4 blue pigments. Middle-East J. Sci. Res. 14 (2013) [8] 1051–1055Google Scholar
  2. [2]
    Giannakas, A.E., Ladavos, A.K., Armatas, G.S.: Surface properties, textural features and catalytic performance for NO + CO abatement of spinels MAl2O4 (M= Mg, Co and Zn) developed by reverse and discontinuous micro emulsion method. Appl. Surf. Sci. 253 (2007) 6969–6979CrossRefGoogle Scholar
  3. [3]
    Llusar, M., Fore, A., Badenes, J.A.: Color analysis of some cobalt-based blue pigments, J. Eur. Ceram. Soc. 21 (2001) 1121–1130CrossRefGoogle Scholar
  4. [4]
    Britto, S., Radha, A.V., Ravishankar, N.: Solution decomposition of the layered double hydroxide (LDH) of Zn with Al. Solid State Sci. 9 (2007) 279–286CrossRefGoogle Scholar
  5. [5]
    Li, W., Li J., Guo, J.: Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. J. Eur. Ceram. Soc. 23 (2003) 2289–2295CrossRefGoogle Scholar
  6. [6]
    Ahmed, I.S., Shama, S.A., Moustafa, M.M.: Synthesis and spectral characterization of CoxMg1−xAl2O4 as new nano-coloring agent of ceramic pigment. Spectrochimica Acta, Part A. 74 (2009) 665–672CrossRefGoogle Scholar
  7. [7]
    Suzuki, T., Nagai, H., Nohara, M.: Melting of antiferromagnetic ordering in spinel oxide CoAl2O4. J. Phys.: Condensed Matter 19 (2007) 145265Google Scholar
  8. [8]
    Chen, Z., Shi, E., Zheng Y.: Hydrothermal synthesis of nano sized CoAl2O4 on ZnAl2O4 seed crystallites. J. Am. Ceram. Soc. 86 (2003) [6] 1058–1060CrossRefGoogle Scholar
  9. [9]
    Aruna, A.T., Mukasyan, A.S.: Combustion synthesis and nano-materials, Current opinion. Solid State and Mater. Sci. 12 (2008) 44–50CrossRefGoogle Scholar
  10. [10]
    Ianos, R., Laza, R., Barvinschi, P.: Synthesis of Mg1−xCoxAl2O4 blue pigments via combustion route. Adv. Powder Techn. 22 (2011) 396–400CrossRefGoogle Scholar
  11. [11]
    Klung. H.P., Alexander L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. John Wiley & Sons Inc., London (1954), 491–494, ISBN-13: 9780471493686Google Scholar
  12. [12]
    Hall, W.H.: X-Ray line broadening in metals. Proc. Phys. Soc. London 62 (1949) 741–743CrossRefGoogle Scholar
  13. [13]
    Yang, Z.G., Shaw L.L.: Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling. Nanostruct. Mater. 7 (1996) [8] 873–886CrossRefGoogle Scholar
  14. [14]
    Viswanathan Swaminathan, Pratap Kumar Deheri, Shekhar Dnyaneswar Bhame, Raju Vijayaraghavan Ramanujan: Novel microwave assisted chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Nanoscale 5 (2013) 2718CrossRefGoogle Scholar
  15. [15]
    Lajapathi Chellappan Nehru, Chinnappanadar Sanjeeviraja: Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method. J. Adv. Ceram. 3 (2014) [3] 171–176CrossRefGoogle Scholar
  16. [16]
    Ianos, R., Laza, R., Barvinschi, P.: Synthesis of Mg1−xCoxAl2O4 blue pigments via combustion route. Adv. Powder Technol. 22 (2011) 396–400CrossRefGoogle Scholar
  17. [17]
    Koroleva, L.F.: Synthesis of spinel-based ceramic pigments from hydroxycarbonates. Glass and Ceram. 61 (2004) 299–302CrossRefGoogle Scholar
  18. [18]
    Ahmed, I.S., Shama, S.A., Moustafa, M.M., Dessouki, H.A., Ali, A.A.: Synthesis and spectral characterization of CoxMg1−xAl2O4 as new nano-coloring agent of ceramic pigment. Spectrochimica Acta, Part A, 74 (2009) 665–672CrossRefGoogle Scholar
  19. [19]
    Hwang, C., Wu T.: Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Materials Science and Engineering B 111 (2004) 197–200CrossRefGoogle Scholar
  20. [20]
    Sousan Rasouli, Mahdiar Valefi, Shirin Jebeli Moeen, Amir Masoud Arabi: Microwave-assisted gel combustion synthesis of ZnO-Co nano-pigments. J. Ceram. Process. Res. 12 (2011) [4] 450–455Google Scholar
  21. [21]
    Goodfellow, B.J., Wilson, R.H.: A Fourier transform IR study of the gelation of amylose and amylopectin. Biopolymers 30 (1990) [13–14] 1183–1189CrossRefGoogle Scholar
  22. [22]
    Brame, E.G., Grasselli J.: Infrared and Raman spectroscopy. Part A, Marcel Dekker, New York (1976), ISBN-13: 9780824763923Google Scholar
  23. [23]
    Vivekanandan, K., Selvasekarapandian, S., Kolandaived, P.: Raman and FT-IR studies of Pb4(NO3)2(PO4)2·2H2O crystal. Mater. Chem. and Phys. 39 (1995) 284–289CrossRefGoogle Scholar
  24. [24]
    Waldon, R.D.: Infrared spectra of ferrites. Physical Rev. 99 (1955) 1727CrossRefGoogle Scholar
  25. [25]
    Deraz, N.M.: Production, physicochemical characterization and magnetic behavior of nanocrystalline Al-doped Co/Fe system. Inter. J. Electrochem. Sci. 7 (2012) 4596–4607Google Scholar
  26. [26]
    Deraz, N.M.: Formation and characterization of cobalt aluminate nano particles. Inter. J. Electrochem. Sci. 8 (2013) 4036–4046Google Scholar
  27. [27]
    Cui, X., Antonietti, M., Yu, S.H.: Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small 6 (2006) [2] 756–759CrossRefGoogle Scholar
  28. [28]
    Ting-Kuo Fey, G., Yung-Da, Cho, Prem Kumar, T.: A TEA-starch combustion method for the synthesis of fine-particulate LiMn2O4 Materials. Chem. and Phys. 87 (2004) 275–284Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • R. M. Khattab
    • 1
    Email author
  • H. E. H. Sadek
    • 1
  • A. A. Gaber
    • 1
  1. 1.Ceramic, Refractory and Building Materials DepartmentNational Research CentreDokki, GizaEgypt

Personalised recommendations