Advertisement

Fabrication and Mechanical Properties of Bone-like Tricalcium Phosphate and Zirconia Composites

  • Hanan H. Beherei
  • Khaled R. Mohamed
High-Performance Ceramics
  • 1 Downloads

Abstract

The goal of this work was to prepare and analyse bioceramic composites having varied tricalcium phosphate and zirconia content and a fixed a mount of other additives. The physical properties and structure of the composites were assessed with x-ray diffraction. Various mechanical tests, including compressive strength, bending strength and Vickers hardness evaluations were performed on the prepared composites. Phase analysis of the composite structures showed the presence of zirconia, calcium zirconate, calcium phosphate, alumina and traces of aluminium phosphate. The mechanical properties of the composites improved with greater increments of zirconia, especially the composites containing 30% and 40% zirconia. Their mechanical properties are comparable to those of human bone. We concluded that the composites are promising as biomaterials in medical applications, especially for low load-bearing sites, such as substitutes for cancellous bone.

Keywords

tricalcium phosphate zirconia X-ray diffraction compressive strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gu, Y.W., Khor, K.A., Pan, D., Cheang, P.: Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials 16 (2004) 3177–85CrossRefGoogle Scholar
  2. [2]
    Kim, H.W., Georgiou, G., Knowles, J.C., Koh, Y.H., Kim, H.E.: Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Biomaterials 18 (2004) 4203–13CrossRefGoogle Scholar
  3. [3]
    Kim, B.K., Bae, H.E., Shim, J.S., Lee, K.W.: The influence of ceramic surface treatments on the tensile load strength of composite resin to all-ceramic coping materials. J. Prosthet. Dent. 4 (2005) 357–62CrossRefGoogle Scholar
  4. [4]
    Akagawa, Y., Ichikawa, Y., Nikai, H., Tsuru, H.: Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J. Prosthet. Dent. 69 (1993) 599–604CrossRefGoogle Scholar
  5. [5]
    Rosengren, A., Pavlovic, E., Oscarsson, S., Krajewski, A., Ravaglioli, A., Pincastelli, A.: Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials 23 (2002) 1237–47CrossRefGoogle Scholar
  6. [6]
    Prabakaran, K., Kannan, S., Rajeswari, S.: Development and characterization of zirconia and hydroxyapatite composites for orthopaedic applications. Trends Biomater. Artif. Organs 18 (2005) [2] 114–116Google Scholar
  7. [7]
    Evis, Z.: Reactions in hydroxylapatite-zirconia composites. Ceram. Int. 33 (2007) 987–991CrossRefGoogle Scholar
  8. [8]
    Sibil, A., Douillard, T., Cayron, C., Godin, N., R’mili, M., Fantozzi, G.: Microcracking of high zirconia refractories after t/m phase transition during cooling: An EBSD study. J. Eur. Ceram. Soc. 31 (2011) 1525–1531CrossRefGoogle Scholar
  9. [9]
    Hannink, R., Kelly, P., Muddle, B.: Transformation toughening in zirconia containing ceramics, J. Am. Ceram. Soc. 83 (2000) [3] 461–487CrossRefGoogle Scholar
  10. [10]
    Engin, N.O., Tas, A.C.: Preparation of porous Ca10(PO4)6(OH)2 and Ca3(PO4)2 bioceramics. J. Am. Ceram. Soc. 83 (2000) 1581–1584CrossRefGoogle Scholar
  11. [11]
    Acchar, W., Costa, A.C.S., Cairo, C.A.A.: Influence of MgO doping in hot-pressing tricalcium phosphate. IOP Conf. Ser. Mater. Sci. Eng. 18 (2011) [19] 2014CrossRefGoogle Scholar
  12. [12]
    Sakka, S., Ben Ayed, F., Bouaziz, J.: Mechanical properties of tricalcium phosphate-alumina composites. IOP Conf. Ser. Mater. Sci. Eng. 28 (2012) 012028, DOI:  10.1088/1757-899X/28/1/012028CrossRefGoogle Scholar
  13. [13]
    Sellami, I., Ben Ayed, F., Bouaziz, J.: Effect of fluoroapatite additive on the mechanical properties of tricalcium phosphate-zirconia composites. IOP Conf. Ser. Mater. Sci. Eng. 28 (2012) 012029, DOI:  10.1088/1757-899X/28/1/012029CrossRefGoogle Scholar
  14. [14]
    Gaasbeek, R.D., Toonen, H.G., Van Heerwaarden, R.J., Buma, P.: Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 26 (2005) 6713–6719CrossRefGoogle Scholar
  15. [15]
    Jensen, S.S., Broggini, N., Hjorting-Hansen, E., Schenk, R., Buser, D.: Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate, a histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implants Res. 17 (2006) 237–243CrossRefGoogle Scholar
  16. [16]
    Destainville, A., Champion, E., Bernache, D.: Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 80 (2003) 269CrossRefGoogle Scholar
  17. [17]
    Sallemi, I., Bouaziz, J., Ben Ayed, F.: Elaboration and characterization of bioceramic based on tricalcium phosphate and zirconia. Int. J. Curr. Eng. Technol. 3 (2013) [5] 1691–1700Google Scholar
  18. [18]
    García-Sanz, F.J., Mayor, M.B., Arias, J.L., Pou, J., León, B., Pérez-Amor, M.: Hydroxyapatite coatings: A comparative study between plasma-spray and pulsed laser deposition techniques. J. Mater. Sci. Mater. Med. 8 (1997) 861–865CrossRefGoogle Scholar
  19. [19]
    Bouslama, N., Ben Ayed, F., Bouaziz, J.: Effect of fluorapatite additive on densification and mechanical properties of tricalcium phosphate. J. Mech. Behav. Biomed. 3 (2010) 2–13CrossRefGoogle Scholar
  20. [20]
    Runyan, J.L., Bennison, S.J.: Fabrication of flaw-tolerant aluminum titanate-reinforced alumina. J. Eur. Ceram. Soc. 7 (1991) 93–99CrossRefGoogle Scholar
  21. [21]
    Sakka, S., Bouaziz, J., Ben Ayed, F.: Advances in biomaterials science and biomedical applications. Book, chapter 2: Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. InTech, Croatia (2013), 23–50, http://dx.doi.org/10.5772/53088Google Scholar
  22. [22]
    Sellami, I., Bouaziz, J., Ben Ayed, F.: The effect of adding magnesium oxide on the mechanical properties of the tricalcium phosphate-zirconia composites. Materials Chemistry and Physics 151 (2015) 50–59CrossRefGoogle Scholar
  23. [23]
    Chrysafi, R., Perraki, T., Kakali, G.: Sol-gel preparation of 2CaO·SiO2. J. Eur. Ceram. Soc. 27 (2007) 1707–1710CrossRefGoogle Scholar
  24. [24]
    Hanan H. Beheri, Khaled R. Mohamed, Gehan T. El-Bassyouni: Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials. Materials and Design 44 (2013) 461–468CrossRefGoogle Scholar
  25. [25]
    Ooi, C.Y., Hamdi, M., Ramesh, S.: Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Inter. 33 (2007) 1171–1177CrossRefGoogle Scholar
  26. [26]
    Silva, V.V., Lameiras, F.S.: Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite. Materials Characterization 45 (2000) 51–59CrossRefGoogle Scholar
  27. [27]
    Rosengren, A., Pavlovic, E., Oscarsson, S., Krajewski, A., Ravaglioli, A., Pincastelli, A.: Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials 23 (2002) 1237–47CrossRefGoogle Scholar
  28. [28]
    Josset, Y., Oum’Hamed, Z., Zarriumpour, A., Lorenzato, M., Adnet, J., Laurent-Marquin, D.: In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J. Biomed. Mater. Res. 47 (1999) 481–93CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Biomaterials Dept.National Research Centre (NRC)Dokki, CairoEgypt

Personalised recommendations