Advertisement

Pinning Behaviour of Nano Nonmagnetic CuO, SnO2 and Magnetic Mn3O4 Substitutions in YBCO Bulk Superconductors

  • A. H. Salama
  • M. El-Hofy
  • Y. S. Rammah
  • M. Elkhatib
High-Performance Ceramics

Abstract

Nanoparticles were doped into YBCO samples as pinning centres by chemical solid-state reaction. High magnetic moment nanoparticles Mn3O4 and nonmagnetic nanoparticles SnO2 and CuO were prepared with a concentration of 0.1, 0.2, 0.3, 0.4 and 0.5 mass-%, respectively by a co-precipitation method. The microstructure and electrical properties of the doped YBCO samples was investigated. Increasing SnO2 in the YBCO samples from 0.1 mass-% to 0.5 mass-% tended together at one point through the sample and appeared as a defect that affects the lattice parameters of the YBCO crystal, which in turn led to degradation of the critical temperature Tc, which did not differ much from the CuO effect, which was added in the same proportions, but it was distributed through the samples. On the contrary, Mn3O4 acted as nano-pinning centre through the sample, which in turn initially led to an improvement of the critical temperature Tc. Further increase of Mn3O4 content, Tc began to decay which is due to the distortion of the lattice parameters of the YBCO crystal.

Keywords

high-temperature superconductors nano-magnetic metal oxides nano-nonmagnetic metal oxides solid-state reaction flux pinning and critical temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Xu, X.L., Guo, J.D., Wang, Y.Z., Sozzi, A.: Synthesis of nanoscale superconducting YBCO by a novel technique. J. Crystal Growth 269 (2004) 625–629CrossRefGoogle Scholar
  2. [2]
    Pan, H.Y., Xu, X.L., Guo, J.D.: TEM characterization of nanoscale YBCO particles. Mater. Lett. 57 (2003) 3869–2873CrossRefGoogle Scholar
  3. [3]
    Matsumoto, K., Mele, P.: Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Superconductor Sci. and Techn. 23 (2010) 1CrossRefGoogle Scholar
  4. [4]
    Ishii, Y., Shimoyama, J., Tazaki, Y., Nakashima, T., Horii, S., Kishio, K.: Enhanced flux pinning properties of YBa2Cu3Oy by dilute impurity doping for CuO chain. Appl. Phys. Lett. 89 (2006) 202514CrossRefGoogle Scholar
  5. [5]
    Krabbes, G., Fuchs, G., Schatzle, P., Gruss, S., Park, J.W., Hardinghaus, F., Stöver, G., Hayn, R., Drechsler, S.-L., Fahr, T.: Zn doping of YBa2Cu3O7 in melt textured materials: Peak effect and high trapped fields. Physica C330 (2000) 181–190CrossRefGoogle Scholar
  6. [6]
    Shlyk, L., Krabbes, G., Fuchs, G., Stöver, G., Gruss, S., Nenkov, K.: Pinning behavior and magnetic relaxation in melt-processed YBCO doped with Li, Ni and Pd, Physica C377 (2002) 437–444CrossRefGoogle Scholar
  7. [7]
    Antal, V., Kanuchova, M., Sefcikova, M., Kovac, J., Diko, P., Eisterer, M., Horhager, N., Zehetmayer, M., Weber, H.W., Chaud, X.: Flux pinning in Al doped TSMG YBCO bulk superconductors. Superconductor Sci. Technol. 22 (2009) 105001CrossRefGoogle Scholar
  8. [8]
    Huang, S.L., Koblischka, M.R., Fossheim, K., Ebbesen, T.W., Johansen, T.H.: Microstructure and flux distribution in both pure and carbon-nanotube-embedded Bi2Sr2CaCu2O8+δ superconductors. Physica C311 (1999) 172–186CrossRefGoogle Scholar
  9. [9]
    Dadras, S., Liu, Y., Chai, Y.S., Daadmehr, V., Kim, K.H.: Increase of critical current density with doping carbon nano-tubes in YBa2Cu3O7−δ. Physica C 469 (2009) 55–59CrossRefGoogle Scholar
  10. [10]
    Strickland, N.M., Long, N.J., Talantsev, E.F., Hoefakker, P., Xia, J.A., Rupich, M.W., Zhang, W., Li, X., Kodenkandath, T., Huang, Y.: Nanoparticle additions for enhanced flux pinning in YBCO HTS film. Curr. Appl. Phys. 8 (2008) 372–375CrossRefGoogle Scholar
  11. [11]
    Yamada, H., Yamasaki, H., Develos-Bagarinao, K., Nakagawa, Y., Mawatari, Y., Nie, J.C., Obara, H., Kosaka, S.: Flux pinning centres correlated along the c-axis in PLD-YBCO films. Superconductor Sci. Technol. 17 (2004) [1] 58–64CrossRefGoogle Scholar
  12. [12]
    Okamura, K., Kiuchi, M., Otabe, E.S., Yasuda, T., Matsushita, T., Okayasu, S.: The pinning property of Bi-2212 single crystals with columnar defects. Superconductor Sci. Technol. 17 (2004) [2] S20–S24CrossRefGoogle Scholar
  13. [13]
    Zhao, Y., Cheng, C.H., Feng, Y., Shibata, S., Koshizuka, N., Murakami, M.: The interpretation of improved flux pinning behaviour and second magnetization peaks observed in overdoped Cu-rich Bi2Sr2CaCu2O8+x single crystal. Superconductor Sci. Technol. 17 (2004) [2] S83–S87CrossRefGoogle Scholar
  14. [14]
    Misko, V.R., Savel’ev, S., Rakhmanov, A.L., Nori, F.: Negative differential resistivity in superconductors with periodic arrays of pinning sites. Phys. Rev. B75 (2007) [2] 24509CrossRefGoogle Scholar
  15. [15]
    Campbell, A.M., Evetts, J.E.: Flux vortices and transport currents in type II superconductors. Adv. Phys. 21 (1972) 199CrossRefGoogle Scholar
  16. [16]
    Blatter, G., Feigelman, M.V., Geshkenbein, V.B. I., Larkin, A., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66 (1994) 1125CrossRefGoogle Scholar
  17. [17]
    Bhargava, A., Alarco, J.A., Mackinnon, I.D.R., Page, D., Iiyushechkin, A.: Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O8. Mater. Lett. 34 (1998) 133–142CrossRefGoogle Scholar
  18. [18]
    El-Hofy, M., Salama, A.: Synthesis and characterization of Ba defective ZnO nano-Particle. Defect Diffus. Forum 280–281 (2008) 1–8Google Scholar
  19. [19]
    El-Hofy, M., Salama, A.: Voltage Switch of nano-size zinc oxide ceramic defected barium. Defect Diffus. Forum 307 (2010) 21–26CrossRefGoogle Scholar
  20. [20]
    Scherrer, P.: Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Mathematisch-Physikalische Klasse 1918 (1918) 98–100Google Scholar
  21. [21]
    Monshi, A., Foroughi, M.R., Monshi, M.R.: Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nanosci. and Eng. 2 (2012) 154–160CrossRefGoogle Scholar
  22. [22]
    Fitzgerald, C.B., Venkatesan, M., Douvalis, A.P., Huber, S., Coey, J.M.D.: SnO2 doped with Mn, Fe or Co: room temperature dilute magnetic semiconductors, J. Appl. Physics 95 (2004) [11] 1CrossRefGoogle Scholar
  23. [23]
    Wang, L., Maxisch, T., Ceder, G.: Oxidation energies of transition metal oxides within the GGA+U framework. Physical Rev. B73 (2006) 195107CrossRefGoogle Scholar
  24. [24]
    Boucher, B., Buhl, R., Perrin, M.: Proprietes et structure magnetique de Mn3O4. J. Phys. Chem. Solids 32 (1971) 2429CrossRefGoogle Scholar
  25. [25]
    Da-Ning, S., Zheng-Zhong, L.: The effect of nonmagnetic doping on high-Tc superconductivity. J. Physica C270 (1996) 274Google Scholar
  26. [26]
    Tang I. M., Leelaprute S, Winotai P.: Coupling of the orthorhombic distortion to the depression of the Tc’s due to the Zn2+ doping in the “Re-123” HTSC’s: a (d+s)-wave picture. J. Mod. Phys. B13 (1999) 2291CrossRefGoogle Scholar
  27. [27]
    Wollman D.A., Van Harlingen D.J., Lee W.C., Ginsberg D.M., Leggett, A.J.: J. Phys. Rev. Lett. 71 (1993) 2134CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • A. H. Salama
    • 1
  • M. El-Hofy
    • 2
  • Y. S. Rammah
    • 2
  • M. Elkhatib
    • 2
  1. 1.Department of Physical Chemistry, Inorganic Chemical Industries and Mineral Resources DivisionNational Research CentreGizaEgypt
  2. 2.Department of Physics, Faculty of ScienceMenoufia UniversityShebin El-KoomEgypt

Personalised recommendations