Nano Alumina: A Review of the Powder Synthesis Method

  • P. S. BeheraEmail author
  • R. Sarkar
  • S. Bhattacharyya
High-Performance Ceramics


Nanocrystalline ceramic materials are those with size smaller than 100 nm which have great importance in the field of nanotechnology. Nano-sized materials have properties superior to bulk materials, including improved surface area-to-volume ratio and high strength and toughness. This review paper presents an outline of the preparation of nano alumina by different methods such as sol-gel, combustion, precipitation, hydrothermal and leaching from kaolin. Nano alumina has a broad range of applications, so development of cost-effective processing routes for synthesis of nano alumina is the most prominent industrial challenge. These methods highlight the benefit of controlled particle size distribution with less agglomeration, improved morphology and controlled generation of pure nano alumina phase during the synthesis process. More research should be carried out to discover processing conditions that advance these goals.


nano alumina powder synthesis particle size agglomeration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kuiry, S.C., Megen, Ed., Patil, S.D., Deshpande, S.A., Seal, S.: Solution-Based Chemical Synthesis of Boehmite Nanofibers and Alumina Nanorods. J. Phys. Chem. B. 109 (2005) 3868–3872CrossRefGoogle Scholar
  2. [2]
    Rajaeiyan, A., Bagheri-Mohagheghi, M.M.: Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and γ-Al2O3 nanoparticles. Adv. Manuf. 1 (2013) 176–182CrossRefGoogle Scholar
  3. [3]
    Mukhopadhyay, A., Basu, B.: Bulk Nanoceramic Composites for Structural Applications: A Review. Proc Indian Natn Sci Acad. 72 (2006) [2] 97–111Google Scholar
  4. [4]
    Krell, A., Schadlich, S.: Nano indentation hardness of submicrometer alumina ceramics. Mater. Sci. Eng A 307 (2001) 172–181CrossRefGoogle Scholar
  5. [5]
    Einaga, H., Futamura, S.: Comparative study on the catalytic activities of alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone. React. Kinet. Catal. Lett. 81 (2004) [1] 121–128CrossRefGoogle Scholar
  6. [6]
    Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R.: Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237 (2000) 176–185CrossRefGoogle Scholar
  7. [7]
    Sun, P.L., Wu, S.P., Chin, T.S.: Melting point depression of tin nanoparticles embedded in a stable alpha-alumina matrix fabricated by ball milling. Mater. Lett. 144 (2015) 142–145CrossRefGoogle Scholar
  8. [8]
    Koli, D.K., Agnihotri, G., Purohit, R.: A Review on Properties, Behaviour and Processing Methods for Al-Nano Al2O3 Composites. Procedia Mater. Sci. 6 (2014) 567–589CrossRefGoogle Scholar
  9. [9]
    Kaya, C., Kaya, F., Boccaccini, A.R., Chawla, K.K.: Fabrication and characterisation of ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition. Acta mater. 49 (2001) 1189–1197CrossRefGoogle Scholar
  10. [10]
    Marthe, J., Meillot, E., Jeandel, G., Enguehard, F., Ilavsky, J.: Enhancement of scattering and reflectance properties of plasma-sprayed alumina coatings by controlling the porosity. Surf. Coat. Technol. 220 (2013) 80–84CrossRefGoogle Scholar
  11. [11]
    Huang, C.L., Wang, J.J., Huang, C.Y.: Sintering behavior and microwave dielectric properties of nano alpha-alumina. Mater. Lett. 59 (2005) 3746–3749CrossRefGoogle Scholar
  12. [12]
    Szabo, N., Lee, C., Trimboli, J., Figueroa, O., Ramamoorthy, R., Midlam-Mohler, S., Soliman, A., Verweij, H., Dutta, P., Akbar, S.: Ceramic-based chemical sensors, probes and field-tests in automobile engines. J. Mater. Sci. 38 (2003) 4239–4245CrossRefGoogle Scholar
  13. [13]
    Elsen, S.R., Ramesh, T.: Optimization to develop multiple response hardness and compressive strength of zirconia reinforced alumina by using RSM and GRA. Int. J. Refract. Met. Hard Mater. 52 (2015) 159–164CrossRefGoogle Scholar
  14. [14]
    Souza, S.P., Souza, S.H., Toledo, S.P.: Standard transition aluminas. Electron Microsc Stud Mater Res. 3 (2000) 104–114Google Scholar
  15. [15]
    Isfahani, T.D., Javadpour, J., Khavandi, A., Dinnebier, R., Goodarzia, M., Rezaie, H.R.: Mechanochemical synthesis of alumina nanoparticles: Formation mechanism and phase transformation. Powder Technol. 229 (2012) 17–23CrossRefGoogle Scholar
  16. [16]
    Tok, A.I.Y., Boey, F.Y.C., Zhao, X.L.: Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J. Mater. Process. Technol. 178 (2006) 270–273CrossRefGoogle Scholar
  17. [17]
    Suchanek, W.L., Garces, J.M.: Hydrothermal synthesis of novel alpha alumina nano-materials with controlled morphologies and high thermal stabilities. CrystEngComm 12 (2010) 2996–3002CrossRefGoogle Scholar
  18. [18]
    Ganesh, I., Torres, P.M.C., Ferreira, J.M.F.: Densification ability of combustion-derived Al2O3 powders. Ceram. Internat. 35 (2009) 1173–1179CrossRefGoogle Scholar
  19. [19]
    Thiruchitrambalama, M., Palkar, V.R., Gopinathan, V.: Hydrolysis of aluminium metal and sol-gel processing of nano alumina. Mater. Lett. 58 (2004) 3063–3066CrossRefGoogle Scholar
  20. [20]
    Ramil, Z., Saleh, R.: Preparation of Ordered Mesoporous Alumina Particles via Simple Precipitation Method. J. Fund. Sci. 4 (2008) 435–443Google Scholar
  21. [21]
    Rogojan, R., Andronescu, E., Ghitulica, C., Vasile, B.S.: Synthesis and characterization of alumina nano-powder obtained by sol-gel method. U.P.B. Sci. Bull. Series B. 73 (2011) [2] 67–76Google Scholar
  22. [22]
    Bahaabad, M.S., Nassaj, E.T.: Economical synthesis of nano alumina powder using an aqueous sol-gel method. Mater. Lett. 62 (2008) 3364–3366CrossRefGoogle Scholar
  23. [23]
    Karim, M.R., Rahman, M.A., Miah, M.A.J., Ahmad, H., Yanagisawa, M., Ito, M.: Synthesis of γ-Alumina Particles and Surface Characterization. TOCOLLSJ. 4 (2011) 32–36CrossRefGoogle Scholar
  24. [24]
    Li, J., Pan, Y., Xiang, C., Ge, Q., Guo, J.: Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process. Ceram. Internat. 32 (2006) 587–591CrossRefGoogle Scholar
  25. [25]
    Mirjalili, F., Mohamad, H., Chuah, L.: Preparation of nano-scale α-Al2O3 powder by the sol-gel method. Ceramics — Silikáty 55 (2011) [4] 378–383Google Scholar
  26. [26]
    Mirjalili, F., Mohamad, H., Chuah, L.: Size-controlled synthesis of nano α-alumina particles through the sol-gel method. Ceram. Internat. 36 (2010) 1253–1257CrossRefGoogle Scholar
  27. [27]
    Mirjalili, F., Chuah, L., Mohamad, H., Razi, A.F., Radiah, A.B.D., Aghababazadeh, R.: Process for Producing Nano-Alpha-Alumina Powder. ISRN Nanotechnology. Volume 2011 Article ID 692594, 5pagesGoogle Scholar
  28. [28]
    Park, Y.K., Tadd, E.H., Zubris, M., Tannenbaum, R.: Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Mater. Res. Bull. 40 (2005) 1506–1512CrossRefGoogle Scholar
  29. [29]
    Bahlawane, N., Watanabe, T.: New Sol-Gel Route for the Preparation of Pure α-Alumina at 950°C, J. Amer. Ceram. Soc. 83 (2000) [9] 2324–2326CrossRefGoogle Scholar
  30. [30]
    Padmaja, P., Pillai, P. K., Warrier, K.G.K.: Adsorption Isotherm and Pore Characteristics of Nano Alumina Derived from Sol-Gel Boehmite. J. Porous Mat. 11 (2004) 147–155CrossRefGoogle Scholar
  31. [31]
    Patil, K.C., Aruna, S.T., Mimani, T.: Combustion synthesis: an update. Current Opinion in Solid State and Materials Science. 6 (2002) [6] 507–512CrossRefGoogle Scholar
  32. [32]
    Afruz, F.B., Tafreshi, M.J.: Synthesis of γ-Al2O3 nanoparticles by different combustion modes using ammonium carbonate. Indian J. Pure Appl. Phys. 52 (2014) 378–385Google Scholar
  33. [33]
    Toniolo, J.C., Lima, M.D., Takimi, A.S., Bergmann, C.P.: Synthesis of alumina powders by the glycine-nitrate combustion process. Mater. Res. Bull. 40 (2005) 561–571CrossRefGoogle Scholar
  34. [34]
    Sharma, A., Modi, O.P., Gupta, G.K.: Effect of fuel to oxidizer ratio on synthesis of Alumina powder using Solution Combustion Technique-Aluminium Nitrate & Glycine combination. Adv. Appl. Sci. Res. 3 (2012) [4] 2151–2158Google Scholar
  35. [35]
    Sharma, A., Rani, A., Singh, A., Modi, O.P., Gupta, G.K.: Synthesis of alumina powder by the urea-glycine-nitrate combustion process: a mixed fuel approach to nanoscale metal oxides. Appl. Nanosci. 4 (2014) 315–323CrossRefGoogle Scholar
  36. [36]
    Sherikar, B.N., Umarji, A.M.: Synthesis of γ-alumina by solution combustion method using mixed fuel approach (urea+ glycine fuel). International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308Google Scholar
  37. [37]
    Peng, T., Liu, X, Dai, K., Xiao, Song, H.: Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder. Mater. Res. Bull. 41 (2006) 1638–1645CrossRefGoogle Scholar
  38. [38]
    Pathak, L.C., Singh, T.B., Das, S., Verma, A.K., Ramachandrarao, P.: Effect of pH on the combustion synthesis of nano-crystalline alumina powder. Mater. Lett. 57 (2002) 380–385CrossRefGoogle Scholar
  39. [39]
    Jiang Li, J., Wu, Y., Pan, Y., Liu, W., Zhu, Y., Guo, J.: Agglomeration of α-Al2O3 powders prepared by gel combustion. Ceram. Internat. 34 (2008) 1539–1542CrossRefGoogle Scholar
  40. [40]
    Jiang Li, J., Wu, Y., Pan, Y., Guo, J.: Alumina precursors produced by gel combustion. Ceram. Internat. 33 (2007) 361–363CrossRefGoogle Scholar
  41. [41]
    Khoshkhan, Z., Salehi, M.: New Method for Preparation of Nano Alumina Powder Using Aluminum (III) Complexes by Combustion Synthesis without Fuel. J. of Nano-Structures 4 (2014) 443–448Google Scholar
  42. [42]
    Wang, S., Li, X., Wang, S., Li, Y., Zhai, Y.: Synthesis of γ-alumina via precipitation in ethanol. Mater. Lett. 62 (2008) 3552–3554CrossRefGoogle Scholar
  43. [43]
    Tabrizi, S.A.H., Nassaj, E.T.: Economical synthesis of Al2O3 nanopowder using a precipitation method. Mater. Lett 63 (2009) 2274–2276CrossRefGoogle Scholar
  44. [44]
    Parida, K.M., Pradhan, A.C., Das, J., Sahu, N.: Synthesis and characterization of nano-sized porous γ-alumina by control precipitation method. Mater. Chem. Phys. 113 (2009) 244–248CrossRefGoogle Scholar
  45. [45]
    Potdar, H.S., Jun, K.W., Bae, J.W., Kim, S.M., Lee, Y.J.: Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route. Appl. Catal. A 321 (2007) 109–116CrossRefGoogle Scholar
  46. [46]
    Wu, Z., Shen, Y., Dong, Y., Jiang, J.: Study on the morphology of α-Al2O3 precursor prepared by precipitation method. J. Alloys Compd. 467 (2009) 600–604CrossRefGoogle Scholar
  47. [47]
    Ruihong, Z., Fen, G., Yongqi, H., Huanqi, Z.: Self-assembly synthesis of organized mesoporous alumina by precipitation method in aqueous solution. Microporous Mesoporous Mater. 93 (2006) 212–216CrossRefGoogle Scholar
  48. [48]
    Li, J.G., Sun, X.: Synthesis and sintering behavior of a nanocrystalline α-alumina powder. Acta mater. 48 (2000) 3103–3112CrossRefGoogle Scholar
  49. [49]
    Somiya, S., Roy, R.: Hydrothermal synthesis of fine oxide powders. Bulletin of Materials Science 23 (2000) [6] 453–460CrossRefGoogle Scholar
  50. [50]
    Al’myasheva, O.V., Korytkova, E.N., Maslov, A.V., Gusarov, V.V.: Preparation of Nanocrystalline Alumina under Hydrothermal Conditions. Inorg. Mater. 41 (2005) [5] 460CrossRefGoogle Scholar
  51. [51]
    Ghanizadeh, S., Bao, X., Vaidhyanathan, B., Binner, J.: Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: a comparative study. Ceram. Internat. 40 (2014) 1311–1319CrossRefGoogle Scholar
  52. [52]
    Lee, J.S., Kim, H.S., Park, N.K., Lee, T.J., Kang, M.: Low temperature synthesis of α-alumina from aluminum hydroxide hydrothermally synthesized using [Al(C2O4) x(OH)y] complexes. Chem. Eng. J. 230 (2013) 351–360CrossRefGoogle Scholar
  53. [53]
    Yang, J., Mei, S., Ferreira, J.M.F.: Hydrothermal Synthesis of Submicrometer α-Alumina from Seeded Tetraethyl ammonium Hydroxide-Peptized Aluminum Hydroxide. J. Amer. Ceram. Soc. 86 (2003) [12] 2055–2058CrossRefGoogle Scholar
  54. [54]
    Sharma, P.K., Jilavi, H., Burgard, D., Nass, R., Schmidt, H.: Hydrothermal Synthesis of Nanosize α-Al2O3 from Seeded Aluminum Hydroxide, J. Amer. Ceram. Soc., 81 (1998) [10] 2732–2734CrossRefGoogle Scholar
  55. [55]
    Suchanek, W.L.: Hydrothermal Synthesis of Alpha Alumina (α-Al2O3) Powders: Study of the Processing Variables and Growth Mechanisms. J. Amer. Ceram. Soc. 93 (2010) [2] 399–412CrossRefGoogle Scholar
  56. [56]
    Han, K.R., Lim, C.S., Hong, M.J.: Preparation Method of Submicrometer-Sized α-Alumina by Surface Modification of g-Alumina with Alumina Sol. J. Amer. Ceram. Soc. 83 (2000) [4] 750–754CrossRefGoogle Scholar
  57. [57]
    Hosseini, S.A., Niaei, A., Salari, D.: Production of γ-Al2O3 from Kaolin. Open J. Phys. Chem. 1 (2011) 23–27CrossRefGoogle Scholar
  58. [58]
    Wahab, A.A.A., Suad, I.A.S.: Alumina recovery from Iraqi kaolinitic clay. Iraqi Bulletin of Geology and Mining 2 (2006) [1] 67–76Google Scholar
  59. [59]
    Yang, H., Liu, M., Ouyang, J.: Novel synthesis and characterization of nanosized γ-Al2O3 from kaolin. Appl. Clay Sci. 47 (2010) 438–443CrossRefGoogle Scholar
  60. [60]
    Liu, M., Yang, H.: Large surface area mesoporous Al2O3 from kaolin: Methodology and characterization Appl. Clay Sci. 50 (2010) 554–559CrossRefGoogle Scholar
  61. [61]
    Pan, F., Lu, X., Wang, T., Wang, Y., Zhang, Z., Yan, Y., Yang, S.: Synthesis of large-mesoporous γ-Al2O3 from coal-series kaolin at room temperature. Mater. Lett. 91 (2013) 136–138CrossRefGoogle Scholar
  62. [62]
    Darban, A.K., Kianinia, Y., Nassaj, Y.T.: Synthesis of nano-alumina powder from impure kaolin and its application for arsenite removal from aqueous solutions. J. Environ. Health Sci. Eng. (2013) 11:19CrossRefGoogle Scholar
  63. [63]
    Numluk, P., Chaisena, A.: Sulphuric Acid and Ammonium Sulfate Leaching of Alumina from Lampang Clay. E-J. Chem. 9 (2012) [3] 1364–1372CrossRefGoogle Scholar
  64. [64]
    Bazin, C., Ouassiti, K. E., Ouellet, V.: Sequential leaching for the recovery of alumina from a Canadian clay. Hydrometallurgy 88 (2007) 196–201CrossRefGoogle Scholar
  65. [65]
    Salahudeen, N., Ahmed, A.K.S., Muhtaseb, A.H.L., Dauda, M., Waziri, S.M., Jibril, B.Y.: Synthesis of gamma alumina from Kankara kaolin using a novel technique. Appl. Clay Sci. 105–106 (2015) 170–177CrossRefGoogle Scholar
  66. [66]
    Salahudeen, N., Ahmed, A.K.S., Muhtaseb, A.H.L., Dauda, M., Waziri, S.M., Jibril, B.Y., Sabahi, J.A.: Synthesis, characterization and adsorption study of nano-sized activated alumina synthesized from kaolin using novel method. Powder Technol. 280 (2015) 266–272CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringNational Institute of TechnologyRourkela, OdishaIndia

Personalised recommendations