Interceram - International Ceramic Review

, Volume 64, Issue 8, pp 364–377 | Cite as

Alumina-Zirconia Hydrophobic Membranes via Sol-Gel Polymeric Route

  • A. A. GaberEmail author
  • D. M. Ibrahim
  • F. F. Abdel-Mohsen
  • E. M. El-Zanati
High-Performance Ceramics


Al2O3-ZrO2 composite membranes were synthesized through the sol-gel polymeric route of ZrCl4 and AlCl3 in the presence of acrylic-acrylamide copolymer as a template. The dried samples were characterized by DSC, TGA, FTIR, XRD and TEM to determine the thermal behaviour, chemical composition, crystal structure, shape and size of the particles.

Octyltrichlorosilane was chosen as a silane coupling agent to increase the hydrophobic nature of the prepared membranes. The morphological structure, hydrophobic nature, water permeability and desalination efficiency of the prepared membranes were studied using SEM, contact angle measurements, permeability and an NaCl rejection coefficient (R%). The crystal structure of zirconia and alumina particles in the composite was affected by the AlCl3 and ZrCl4 feed ratio. As the zirconia concentration increased, the average particle size of the composite particles became larger, and the uniformity of the membrane layer decreased. The composite AZ25 [alumina (75 mass-%)-zirconia (25 mass-%)] showed a uniform crack-free membrane layer with a pore diameter of 41 nm, a porosity of 27.34%, with a great hydrophobic nature with the contact angle reached at 116°C.This membrane could withstand calcination temperatures up to 700°C, as the alumina and zirconia were present in their active forms; gamma-alumina and tetragonal, respectively.

The membrane produced from this composite showed a high surface area of 204.9 m2/g with a respective particle size of 6.95 nm. Moreover it showed a moderate ability to reject NaCl from water with a rejection coefficient of 57.42%, with a high permeation flux of 17.5 L·h−1m−2 at 75°C.


alumina zirconia alumina-zirconia composite membrane sol-gel hydrophobic membranes water desalination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sakamoto, K., Fujii, K., Inoue, A., Kozuka, H., Ohta, H.: Differential recovery of terpene hydrocarbons and oxygenated compounds from condensates containing essential oil discharged during concentration of citrus juices using a ceramic membrane. Food Sci. Technol. Res. 9 (2003) 11–16CrossRefGoogle Scholar
  2. [2]
    Wang, P., Xu, N.P., Shi, J.: A pilot study of the treatment of waste rolling emulsion using zirconia microfiltration membranes. J. Membr. Sci. 173 (2000) 159–166CrossRefGoogle Scholar
  3. [3]
    Cortalezzi, M.M., Rose, J., Barron, A.R., Wiesner, M.R.: Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles. J. Membr. Sci. 205 (2002) 33–43CrossRefGoogle Scholar
  4. [4]
    Tang, K.J., Yu, J.H., Zhao, YY, Liu, Y., Wang, X.F., Xu, R.R.: Fabrication of superhydropho-bic and super-oleophilic boehmite membranes from anodic alumina oxide film via a two-phase thermal approach, J. Mater. Chem. 16 (2006) 1741–1745CrossRefGoogle Scholar
  5. [5]
    Falamaki, C., Khakpour, Z., Aghaie, A.: Zirconia-zircon composite microfiltration membranes based on porous alumina supports. J. Membr. Sci. 263 (2005) 103–112CrossRefGoogle Scholar
  6. [6]
    Gestel, V., Kruidhof, H., Blank, D.H.A., Bouwmeester, H.J.M.: ZrO2 and TiO2 membranes for nanofiltration and pervaporation, Part 1: Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO <300. J. Membr. Sci. 284 (2006) 128–136CrossRefGoogle Scholar
  7. [7]
    Fuertes, M.C., Soler-Illia, G.J.A.A.: Processing of macroporous titania thin films: from multiscale functional porosity to nanocrystalline macroporous TiO2. Chem. Mater. 18 (2006) 2109–2117CrossRefGoogle Scholar
  8. [8]
    Wang, YH., Liu, X.Q., Meng, G.Y.: Preparation and properties of supported 100% titania ceramic membranes. Mater. Res. Bull. 43 (2008) 1480–1491CrossRefGoogle Scholar
  9. [9]
    Burggraaf, A.J.: Fundamentals of Inorganic Membrane Science and Technology, Elsevier Science B.V. (1996)Google Scholar
  10. [10]
    Ding, X.B., Fan, Y. Q., Xu, N.P.: A new route for the fabrication of TiO2 ultrafiltration membranes with suspension derived from a wet chemical synthesis. J. Membr. Sci. 270 (2006) 179–186CrossRefGoogle Scholar
  11. [11]
    Yang, C., Zhang, G., Xu, N., Shi, J.: Preparation and application in oil-water separation of ZrO2/a-Al2O3 MF membrane. J. Membr. Sci. 142 (1998) 235–243CrossRefGoogle Scholar
  12. [12]
    Bhave, R.: Inorganic Membranes, Synthesis, Characterization and Properties. Van Nostrand Reinhold, New York (1991)Google Scholar
  13. [13]
    Wang, P., Xu, N., Shi, J.: A pilot study of the treatment of waste rolling emulsion using zirconia microfiltration membranes. J. Membr. Sci. 173 (2000) 159–166CrossRefGoogle Scholar
  14. [14]
    Zhang G., Gu H., Xing W., Xu N., Shi J.: Treatment of cool rolling emulsion waste-water with inorganic ceramic membranes. Gaoxiao Huaxue Gongcheng Xuebao 12 (1998) [3] 288–292 (in Chinese)Google Scholar
  15. [15]
    Yazawa, T., Tanaka, H., Nakamichi, H., Yokoyama, T.: Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method. J. Membr. Sci. 60 (1991) 307CrossRefGoogle Scholar
  16. [16]
    Burggraaf, A.J., Keizer, K.: Synthesis of inorganic membranes. in: R.R. Bhave (Ed.), Inorganic Membranes, Synthesis, Characterization and Applications. Van Nostrand Reinhold, New York (1991) chap. 2Google Scholar
  17. [17]
    Cot, L., Guizard, Ch., Larbot, A.: Novel ceramic material for liquid separation process: present and prospective applications in microfiltration and ultrafiltration. Ind. Ceramic 8 (1988) [3] 143Google Scholar
  18. [18]
    Burggraaf, A.J.: Fundamentals of Inorganic Membrane Science and Technology. Elsevier Science B.V. (1996)Google Scholar
  19. [19]
    Larbot, A., Fabre, J.P., Guizard, C., Cot, L.: Inorganic membranes obtained by sol-gel technique. J. Membr. Sci. 39 (1988) 203CrossRefGoogle Scholar
  20. [20]
    Julbe, A., Guizard, C., Larbot, A., Cot, A.L., Giroir-Fendler, A.: The sol-gel approach to prepare candidate microporous inorganic membranes for membrane reactors. J. Membr. Sci. 77 (1993) 137CrossRefGoogle Scholar
  21. [21]
    Brinker, C.J., Sehgal, R., Hietala, S.L., Deshpande, R., Smith, D.M., Loy, D., Ashley, C.S.: Sol-gel strategies for controlled porosity inorganic materials. J. Membr. Sci. 94 (1994) 85CrossRefGoogle Scholar
  22. [22]
    Guizard, C., Cygankiewicz, N., Larbot, A., Cot, L.: Sol-gel transition in zirconia systems using physical and chemical processes. J. Non-Crystalline Solids 82 (1986) 86CrossRefGoogle Scholar
  23. [23]
    Munoz-Aguado, M.J., Gregorkiewitz, M., Larbot, A.: Solgel synthesis of the binary oxide (Zr, Ti)O2 from the alkoxides and acetic acid in alcoholic medium. Res. Bull. 17 (1992) 87CrossRefGoogle Scholar
  24. [24]
    Doeuff, S., Henry, M., Sanchez, C.: Solgel synthesis and characterization of titanium oxo-acetate polymers. Mater. Res. Bull. 25 (12) (1990) 1519CrossRefGoogle Scholar
  25. [25]
    Etienne, J., Larbot, A., Julbe, A., Cot, L: A microporous zirconia membrane prepared by the sol-gel process from zirconyl oxalate. J. Membr. Sci. 86 (1994) 95CrossRefGoogle Scholar
  26. [26]
    Gaber, A.A.: preparation of alumina membranes by sol-gel polymeric route. M.Sc. (2007)Google Scholar
  27. [27]
    Ibrahim, D.M., Abdel-Mohsen, F.F., El-Zanati, E.M., Abdel-Azem, A.: Alumina Membrane via Polymer Templates. Interceram 59 (2010) [6]Google Scholar
  28. [28]
    Ibrahim, D.M., Abdel-Mohsen, F.F., Gaber, A.A.: Polymers as Templates for the Preparation of Nano-Sized Alumina Powder. Interceram 05/2011Google Scholar
  29. [29]
    Gaber, A.A.: preparation of composite alumina membranes via sol-gel polymeric route. Ph.D., Ain Shams University (2012)Google Scholar
  30. [30]
    Abdel-Azem, A., Ibrahim, D.M., Abdel-Mohsen, F.F., El-Zanati, E.M: Synthesis of alumina, titania and alumina-titania hydrophobic membranes via sol-gel polymeric route. Journal of analytical science and technology (2013) [4]Google Scholar
  31. [31]
    Leger, C., Lira, H.D.L., Paterson, R.: Preparation and properties of surface modified ceramic membranes. Part II. Gas and liquid permeabilities of 5 nm alumina membranes modified by a monolayer of bound polydimethylsiloxane(PDMS) silicone oil. J. Membr. Sci. 120 (1996) [1] 135–146CrossRefGoogle Scholar
  32. [32]
    Alami Younssi, S., et al.: γ-Alumina membranes grafting byorganosilanes and its application to the separation of solvent mixtures by pervaporation, Sep. Purif. Technol. 32 (1–3) (2003) 175–179.CrossRefGoogle Scholar
  33. [33]
    Dafinov, A., Garcia-Valls, R., Font, J.: Modification of ceramic membranes by alcohol adsorption. J. Membr. Sci. 196 (2002) [1] 69–77CrossRefGoogle Scholar
  34. [34]
    Krajewski, S.R., et al.: Grafting of ZrO2 powder and ZrO2 membrane by fluoroalkylsilanes. Colloids Surf. A243 (2004) [1–3] 43–47CrossRefGoogle Scholar
  35. [35]
    Larbot, A. et al.: Water desalination using ceramic membrane distillation. Desalination 168 (2004) 367–372CrossRefGoogle Scholar
  36. [36]
    Picard, C., et al.: Grafting of ceramic membranes by fluorinated silanes: hydrophobic features. Sep. Purif. Technol. 25 (2001) [1–3] 65–69CrossRefGoogle Scholar
  37. [37]
    Picard, C., et al.: Characterisation of hydrophilic ceramic membranes modified by fluoro-alkylsilanes into hydrophobic membranes. Solid State Sci. 6 (2004) [6] 605–612CrossRefGoogle Scholar
  38. [38]
    Sah, A., et al.: Hydrophobic modification of 7-alumina membranes with organochlorosi-lanes. J. Membr. Sci. 243 (2004) [1/2] 125–132CrossRefGoogle Scholar
  39. [39]
    Van Gestel, T., et al.: Surface modification of y-AI2O/TO2 multilayer membranes for applications in non-polar organic solvents. J. Membr. Sci. 224 (1/2) (2003) 3–10CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • A. A. Gaber
    • 1
    Email author
  • D. M. Ibrahim
    • 1
  • F. F. Abdel-Mohsen
    • 2
  • E. M. El-Zanati
    • 3
  1. 1.Dept. of CeramicsNational Research CentreDokki, CairoEgypt
  2. 2.Dept. of PolymersNational Research CentreDokki, CairoEgypt
  3. 3.Dept. Chemical EngineeringNational Research CentreDokki, CairoEgypt

Personalised recommendations