Interceram - International Ceramic Review

, Volume 64, Issue 8, pp 343–345 | Cite as

Synthesis of (xMgO-yAl2O3-5SiO2) Ceramic via the Sol-Gel Technique in Air and under Nitrogen Gas Flow

  • S. H. Kenawy
  • H. H. M. DarweeshEmail author


The pure ceramic material was synthesized stoichiometrically with compositions of xMgO-yAl2O3-5SiO2 (x = 2.6–3.0 mol, y = 1.5–2.0 mol) mainly using metal alkoxides through the sol-gel route. The densification and crystallization behaviours of these sintered bodies were investigated using XRD. Density and porosity were investigated using the Archimedes method. The 2MgO-2Al2O3-5SiO2 glass composition was fully densified and crystallized into high purity α-cordierite. The evolution of the microstructure was studied using scanning electron microscopy. It was found that increasing the firing temperature enhanced the bodies’ density. Mullite net and rods crystallize in the cordierite matrix when it is heat treated at 1350°C.


cordierite synthesis sol-gel density mechanical properties sintering XRD SEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jianfeng Wu, Guanghui Leng, Xiaohong Xu, Kun Li, Xinbing Lao, Cheng Zhou: In-situ synthesis of a cordierite-andalusite composite for solar thermal storage. Solar Energy Materials and Solar Cells 108 (2013) [1] 9–16Google Scholar
  2. [2]
    Gökçe, H., Ağaoğulları, D., Öveçoğlu, M.L., Dumana, I., Boyraz, T.: Characterization of microstructural and thermal properties of steatite/cordierite ceramics prepared by using natural raw materials. J. Eur. Ceram. Soc. 31 (2011) 2741–2747CrossRefGoogle Scholar
  3. [3]
    Taruta, S., Hayashi, T., Kitajima, K.: Preparation of machinable cordierite/mica composite by low-temperature sintering. J. Eur. Ceram. Soc. 24 (2004) 3149–3154CrossRefGoogle Scholar
  4. [4]
    Camerucci, M.A., Urretavizcaya, G., Cavalieri, A.L.: Mechanical behavior of cordierite and cordierite-mullite materials evaluated by indentation techniques. J. Eur. Ceram. Soc. 21 (2001) 1195–1204CrossRefGoogle Scholar
  5. [5]
    Kostić-Gvozdenović, L., Janaćković, T., Tecilazić-Stevanović, M., Janaćković, D.: Effect of ZnO as additive on the sintering and synthesis of cordierite-mullite ceramics. In: Ziegler, G., Hausner, H. (Eds.): Euro-Ceramics II, Vol. III: Electroceramics and Ceramics for Special Applications. Deutsche Keramische Gesellschaft e.V., Cologne (1993) 2431–2435Google Scholar
  6. [6]
    Dupon, R.W., McConville, R.L., Musolf, D.J., Tanous, A.C., Thompson, M.S.: Preparation of cordierite below 1000°C via bismuth oxide flux. J. Am. Ceram. Soc. 73 (1990) 335–339CrossRefGoogle Scholar
  7. [7]
    Malachevsky, M.T., Fiscina, J.E., Esparza, D.A.: Preparation of synthetic cordierite by solid-state reaction via bismuth oxide flux. J. Am. Ceram. Soc. 84 (2001) 1575–1577CrossRefGoogle Scholar
  8. [8]
    Mei, S., Yang, J., Ferreira, J.M.F.: Microstructural evolution in sol-gel derived P2O5-doped cordierite powders. J. Eur. Ceram. Soc. 20 (2000) 2191–2197CrossRefGoogle Scholar
  9. [9]
    Sumi, K., Kobayashi, Y., Kato, E.: Low-temperature fabrication of cordierite ceramics from kaolinite and magnesium hydroxide with boron oxide additions. J. Am. Ceram. Soc. 82 (1999) 783–785CrossRefGoogle Scholar
  10. [10]
    Zhu, P., Wang, L.Y., Hong, D., Zhou, M.: A study of cordierite ceramics synthesis from serpentine tailing and kaolin tailing. Sci. of Sintering 44 (2012) 129–134CrossRefGoogle Scholar
  11. [11]
    Kazakos, A.M., Komarneni, S., Roy, R.: Sol-gel processing of cordierite: Effect of seeding and optimization of heat treatment. J. Mater. Res. 5 (1990) 1095–1103CrossRefGoogle Scholar
  12. [12]
    Abdulmula Ali Albhilil, Palou, M., Kozánková, J.: Characterization of cordieritemullite ceramics prepared from natural raw materials. Acta Chimica Slovaca 6 (2001) [1] 1–7, DOI:  10.2478/acs-2013-0001Google Scholar
  13. [13]
    Ianos, R., Lazau, I., Pacurariu, C.: Solution combustion synthesis of a-cordierite. J. Alloys Comp. 480 (2009) 702–705CrossRefGoogle Scholar
  14. [14]
    Goren, R., Gocmez, H., Ozgur, C.: Synthesis of cordierite powder from talc, diatomite and alumina. Ceram. Int. 32 (2006) 407–409CrossRefGoogle Scholar
  15. [15]
    Ghitulica, C., Andronescu, E., Nicola, O., Dicea, A., Birsan, M.: Preparation and characterization of cordierite powders. J. Eur. Ceram. Soc. 27 (2007) 711–713CrossRefGoogle Scholar
  16. [16]
    Janaćković, D., Jokanović, V., Kostić-Gvozdenović, L., Zec, S., Usko-Ković, D.: Synthesis and formation mechanism of submicrometre spherical cordierite powders by ultrasonic spray pyrolysis. J. Mater. Sci. 32 (1997) 163–168CrossRefGoogle Scholar
  17. [17]
    Petrović, R., Janaćković, D., Zec, S., Drmanić, S., Kostić-Gvozdenović, L.: Phase-transformation kinetics in triphase cordierite gel. J. Mater. Res. 16 (2001) 451–458CrossRefGoogle Scholar
  18. [18]
    Petrović R., Janaćković, D., Zec, S., Drmanić, S., Kostić-Gvozdenović, L.: Crystallization behavior of alkoxide-derived cordierite gel. J. Sol-Gel Sci. Technol. 28 (2003) 111–118CrossRefGoogle Scholar
  19. [19]
    Janković, I., Astvan, C., Lazarević, S., Tanasković, D., Orlović, A., Petrović, R., Janaćković, D.: Phase transformation in cordierite gel synthesized by non-hydrolitic sol-gel route. Ceram. Int. 33 (2007) 1263–1268CrossRefGoogle Scholar
  20. [20]
    Nikzad, L., Ghofrani, S., Majidian, H., Ebadzadeh, T.: Microwave sintering of mullite-cordierite precursors prepared from solution combustion synthesis. Ceram. Int. 41 (2015) [8] 9392–9398CrossRefGoogle Scholar
  21. [21]
    Salmon, R., Matijević, E.: Preparation of colloidal magnesium-aluminum-silicates by hydrolysis of a mixed alkoxide. Ceram. Int. 16 (1990) 157–163CrossRefGoogle Scholar
  22. [22]
    Okuyama, M., Fukui, T., Sakurai, C.: Effects of complex precursors on alkoxide-derived cordierite powder. J. Am. Ceram. Soc. 75 (1992) 153–160CrossRefGoogle Scholar
  23. [23]
    Ismail, M.G.M.U., Tsunatori, H., Nakai, Z.: Preparation of mullite-cordierite composite powders by the sol-gel method: its characteristics and sintering. J. Am. Ceram. Soc. 73 (1990) 537–543CrossRefGoogle Scholar
  24. [24]
    Tang, B., Fang, Y.W., Zhang, S.R., Ning, H.Y., Jing, C.Y.: Preparation and characterization of cordierite powders by water-based sol.gel method. Indian J. Eng. Mater Sci. 18 (2011) 221–226Google Scholar
  25. [25]
    Awano, M., Takagi, H.: Synthesis of cordierite and cordierite-ZrSiO4 composite by colloidal processing. J. Mater. Sci. 29 (1994) 412–418CrossRefGoogle Scholar
  26. [26]
    Petrović, R., Janaćković, D., Bozović, B., Zec, S., Kostić-Gvozdenović, L.: Densification and crystallization behaviour of colloidal cordierite-type gel. J. Serb. Chem. Soc. 66 (2001) 335–343CrossRefGoogle Scholar
  27. [27]
    Evans, A.G., Charles, E.A.: Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59 (1976) 371–372CrossRefGoogle Scholar
  28. [28]
    Shamsudin, Z., Hodzic, A., Soutis, C, Hand, R.J., Hayes, S.A., Bond, I.P.: Characterisation of thermo-mechanical properties of MgO-Al2O3-SiO2 glass ceramic with different heat treatment temperatures. J. Mater. Sci. 46 (2011) 5822–2829CrossRefGoogle Scholar
  29. [29]
    Marikkannana, S.K., Ayyasamy, P.E.: Synthesis, characterisation and sintering behavior influencing the mechanical, thermal and physical properties of cordierite-doped TiO2. J. Mater. Res. Technol. 2 (2013) [3] 269–275CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.Refractories, Ceramics and Building Materials DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations