Advertisement

Interceram - International Ceramic Review

, Volume 64, Issue 6–7, pp 298–302 | Cite as

Effect of LaPO4 Content on the Machinability, Microstructure and Biological Properties of Al2O3

  • A. Badolia
  • R. Sarkar
  • S. K. Pal
High-Performance Ceramics

Abstract

Synthesized LaPO4 was mixed with calcined alumina at 10, 20, 30, 40 and 50 mass-%, and the mixed compositions were pressed and sintered at 1500, 1550 and 1600°C. Sintered products were analyzed for phase analysis, machinability (drilling by conventional tools) microstructure and biocompatibility studies. No reaction between the reactants was found and sintered compositions showed a composite character. Addition of LaPO4 was found to impart machinability in alumina ceramics. A good distribution of LaPO4 particles was observed in the microstructure. A positive response was observed for the sintered composites in bioactivity (immersion in SBF solution) and in vitro biocompatibility (cytotoxicity study) tests.

Keywords

Al2O3-LaPO4 composites machinability microstructure biological studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Williams, D.F.: The Williams dictionary of biomaterials. Liverpool, UK: Liverpool University Press (1999) pp 368Google Scholar
  2. [2]
    Williams, D. F.: Biomaterials 30 (2009) 5897–5909CrossRefGoogle Scholar
  3. [3]
    Best, S.M., Porter, A.E., Thian, E.S., Huang, J.: Europ. Ceram Soc. 28 (2008) 1319–1327CrossRefGoogle Scholar
  4. [4]
    Jandt, K.D.: Adv. Eng. Mater. 9 (2007) 1038–1050Google Scholar
  5. [5]
    Dorozhkin, S.V.: Biomaterials, 31 (2010) 1465–1485CrossRefGoogle Scholar
  6. [6]
    Hench, L.L.: J. Amer. Ceram. Soc. 74 (1991) [7] 1487–1510CrossRefGoogle Scholar
  7. [7]
    Yamamura, T., Kotoura, Y., Kasahara, K., Takahashi, M., Abe, M.: Intraoperative Radiotherapy and Ceramic Prosthesis Replacement for Osteosarcoma. Springer Verlag, Tokyo (1989)CrossRefGoogle Scholar
  8. [8]
    Maccauro, G., Iommetti, P.R., Raffaelli, L., Manicone, P.F.: Biomaterials Applications for Nanomedicine [15] November (2011)Google Scholar
  9. [9]
    Wang, R., Pan, W., Chen, J., Fang, M., Meng, J.: Mat. Lett. 57 (2002) 822–827CrossRefGoogle Scholar
  10. [10]
    Grossman, D.G.: J. Amer. Ceram. Soc. 55 (1972) [9] 446–449CrossRefGoogle Scholar
  11. [11]
    Pan, W., Wang, R.G.: Ceram. Internat. 29 (2003) [1] 19–25CrossRefGoogle Scholar
  12. [12]
    Min, W., Daimon, K., Matsubara, T., Hikichi, Y.: Mat. Res. Bull. 37 (2002) [6] 1107–1115CrossRefGoogle Scholar
  13. [13]
    Zhou, Z., Pan, W., Xie, Z.: J. Europ. Ceram. Soc., 23 (2003) [10] 1649–1654CrossRefGoogle Scholar
  14. [14]
    Davis, J.B., Marshall, D.B., Housley, R.M., Morgan, P.E.D.: J. Amer. Ceram. Soc. 81 (1998) [8] 2169–2175CrossRefGoogle Scholar
  15. [15]
    Kuo, D.H., Kriven, W.M.: Mat. Sci. & Eng: A241 (1998) [1–2] 241–250CrossRefGoogle Scholar
  16. [16]
    Marshall, D.B., Morgan, P.E.D., Housley, R.M., Cheung, J.T.: J. Amer. Ceram. Soc. 81 (1998) [4] 951–956CrossRefGoogle Scholar
  17. [17]
    Majeeda, M.A., Vijayaraghavan, L., Malhotra, S.K., Krishnamorthy, R.: J. Mat. Proc. Tech. 209 (2009) [5] 2499–2507CrossRefGoogle Scholar
  18. [18]
    Byrappa, K., Devaraju, M. K., Paramesh, J. R., Basavalingu, B., Soga, K.: J. Mat. Sci. 43 2229–2233Google Scholar
  19. [19]
    Kodama, N., Sasaki, N., Yamaga, M., Masui, Y.: J. Lumin. (2001) [94–95] 19–22Google Scholar
  20. [20]
    Kodama, N., Tanii, Y., Yamaga, M.: J. Lumin. (2000) [87–89] 1076–1078Google Scholar
  21. [21]
    Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., Guo, L.H.: Nano Letter Amer. Chem. Soc. 4 (2004) [11] 2191–2196CrossRefGoogle Scholar
  22. [22]
    Lim, S.F., Riehn, R., Ryu, W.S., Khanarian, N., Tung, C.: Nano Letter. Amer. Chem. Soc. 6 (2006) [2] 169–174CrossRefGoogle Scholar
  23. [23]
    Mengxiao, Y., Li, F., Chen, Z., Hu, H., Zhan, C., Yang, H., Haung, C.: Ana. Chem. Amer. Chem. Soc. 81 (2009) [3] 930–935Google Scholar
  24. [24]
    Badolia, A., Sarkar, R., Pal, S.K.: Trans. Ind. Ceram. Soc. 73 (2014) [2] 115–120CrossRefGoogle Scholar
  25. [25]
    Reactive alumina’s for ceramic applications. Product catalogue, Almatis Inc., USAGoogle Scholar
  26. [26]
    Tas, C.: Biomaterials 21 (2000) 1429–1438CrossRefGoogle Scholar
  27. [27]
    Ramires, P.A., Romito, A., Cosentino, F., Milella, E.: Biomaterials 22 (2001) 1467–1474CrossRefGoogle Scholar
  28. [28]
    Lucas, S., Champion, E., Assollant, D.B., Leroy, G.: J. Sol. St. Chem. 177 (2004) 1312–1320CrossRefGoogle Scholar
  29. [29]
    Donaldson, J.D., Hezel, A., Ross, S.D.: J. Inorg. Nucl. Chem. 29 (1967)Google Scholar
  30. [30]
    Lai, H., Du, Y., Zhao, M., Sun, K., Yang, L.: Ceramic Internat. 40 (2014) 1885–1891CrossRefGoogle Scholar
  31. [31]
    Wang, R., Pan, W., Chen, J., Fang, M., Jiang, M., Cao, Z.: Ceramic Internat. 29 (2003) 83–89CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations