Interceram - International Ceramic Review

, Volume 64, Issue 6–7, pp 292–297 | Cite as

Synthesis, In Vitro and In Vivo Behaviour of TiO2 Containing Inorganic/Organic Hybrids

  • S. M. NagaEmail author
  • M. M. S. Wahsh
  • Abeer M. El-Kady
  • H. I. E. Asaker
High-Performance Ceramics


In the present study inorganic/organic hybrids reinforced by introducing titanium (TiO2) in the form of Ti-n-butoxide were prepared. The phase composition, microstructure and mechanical properties of the prepared hybrids were investigated. Increasing the titanium content gradually enhanced the mechanical data of the prepared hybrids. The formation of apatite on the surface of the prepared hybrids was examined in SBF (simulated body fluid). In vivo studies revealed the ability of the hybrids to regenerate bone tissue in femur defects of adult male rabbits five months after surgery. The prepared hybrids are considered to be promising materials for bone substitutes or bone filler.


inorganic/organic hybrids mechanical properties in vivo test in vitro test microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E: Biomaterials science: An introduction to materials in medicine, 2nd edition, Elsevier Academic Press, San Diego, USA, (2004), ISBN: 9780080470368Google Scholar
  2. [2]
    Hull, D., Clyne, T.W: An introduction to composite materials, 2nd edition Cambridge University Press, Cambridge, UK, (1996), ISBN: 9780521388559CrossRefGoogle Scholar
  3. [3]
    Park, J.B., Lakes, R.S: Biomaterials: An introduction, 2nd edition, Plenum Press, New York, USA, (1992), ISBN: 9780306439926CrossRefGoogle Scholar
  4. [4]
    Maquet, V., Boccaccini, A.R., Pravata, L., Notingher, I., Jerome, R.: Porous poly([alpha]-hydroxyacid) / bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterization. Biomater. 25n (2004) 4185–4194CrossRefGoogle Scholar
  5. [5]
    Blaker, J.J., Maquet, V., Jerome, R., Boccaccini, A.R., Nazhat, S.N.: Mechanically anisotropic PDLLA / bioglass composite foams as scaffolds for bone tissue engineering. Acta. Biomater. 1 (2005) 643–652CrossRefGoogle Scholar
  6. [6]
    Day, R.M., Maquet, V., Boccaccini, A.R., Jerome, R., Forbe, A.: In vitro and in vivo analysis of macroporous biodegradable poly (D, L-lactide-co-glycolide) scaffolds containing bioactive glass. J. Biomed. Mater. Res. 75A (2005) 778–787CrossRefGoogle Scholar
  7. [7]
    Jiang, G., Evans, M.E., Jones, I., Rudd, C.D., Scotchford, C.A., Walker, G.S.: Preparation of poly (e-caprolactone) / continuous fiber composite using monomer transfer moulding for bone implant. Biomater. 26 (2005) 2281–2288CrossRefGoogle Scholar
  8. [8]
    Jaakkola, T., Rich, J., Tirri, T., Närhi, T., Jokinen, M., Seppälä, J., Yli-Urpo, A.: In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly ([epsilon]-caprolactone-CO-lactide) and bioactive glass (S53P4). Biomater. 25 (2004) 575–581CrossRefGoogle Scholar
  9. [9]
    Kamitakahara, M., Kawashita, M., Miyata, N., Kokubo, T., Nakamura, T.: Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different PDMS contents. J. Sol-Gel Sci. Technol. 21 (2001) 75–81CrossRefGoogle Scholar
  10. [10]
    Hijón, N., Manzano, M., Salinas, A.J., Vallet-Regí, M.: Bioactive CaO-SiO2-PDMS coatings on Ti6Al4V substrates. Chem. Mater. 17 (2005) [6] 1591–1596CrossRefGoogle Scholar
  11. [11]
    Chen, Q., Miyaji, F., Kokubo, T., Nakamura, T.: Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. Biomater. 20 (1999) 1127–1132CrossRefGoogle Scholar
  12. [12]
    Chen, Q., Miyaji, F., Kokubo, T., Nakamura, T.: Bioactivity and mechanical properties of PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. J. Biomed. Mater. Res. 51 (2000) 605–611CrossRefGoogle Scholar
  13. [13]
    Chen, Q., Miyaji, F., Kokubo, T., Nakamura, T.: Effect of heat treatment on bioactivity and mechanical properties of PDMS modified CaO-SiO2-TiO2 hybrids via sol-gel process. J. Mater. Sci.: Mater. Med. 12 (2001) 515–522Google Scholar
  14. [14]
    Vallet-Regí, M., Ragel, C. V., Salinas, A.J.: Glasses with medical applications. Europ. J. Inorg. Chem. 6 (2003) 1029–1042CrossRefGoogle Scholar
  15. [15]
    Manzano M., Salinas A.J., Vallet-Regí, M: P-Containing ORMOSILS for bone reconstruction. Progress in Solid State Chem. 34 (2006) 267–277CrossRefGoogle Scholar
  16. [16]
    Li, P., Ohtsuki, C., Kokubo, T., Nakanishi, K., Soga, N., Nakamura, T., de Groot, K. A.: The role of hydrated silica, titanium, and alumina in inducing apatite on implants. J. Biomed. Mater. Res. 28 (1994) [1] 7–15CrossRefGoogle Scholar
  17. [17]
    Miyata, N., Fuke, K., Chen, Q., Kawashita, M., Kokubo, T., Nakamura, T.: Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2-TiO2 hybrids derived from sol-gel processing. Biomater. 25 (2004) 1–7CrossRefGoogle Scholar
  18. [18]
    Wu, G.S., Gui, L., Xu, Y.: Preparation and characterization of PES/TiO2 Composite membranes. Appl. Surface. Sci. 254 (2008) 7080–7086CrossRefGoogle Scholar
  19. [19]
    Dutoit, D.M.C., Schneider, M., Hutter, R., Baiker, A.: Titania-silica mixed oxide. J. Catal. 161 (1996) 165–168CrossRefGoogle Scholar
  20. [20]
    Ravarian, R., Wei, H., Dehghani, F.: Improving the bioactivity of bioglass / (PMMA-co-MPMA) Organic-Inorganic Hybrid. Conf. Proc. IEEE Eng. Med. Biol. Soc. Boston, MA, USA. (2011) 3593–3596Google Scholar
  21. [21]
    Li, J., Ni, X.P., Wang, X., Li, H.Z., Leong, K.W.: Self-assembled supermolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomater. 27 (2006) 4132–4140CrossRefGoogle Scholar
  22. [22]
    Coate, J.: Interpretation of infrared spectra, a practical approach, in Encyclopedia of analytical chemistry, R. A. Meyers (Ed.), John Wiley & Sons Ltd., Chichester (2000) 10815–10837Google Scholar
  23. [23]
    Blackwood, K., Pethrick, R., Simpson, F., Day, R., Watson, C.: Titanium dioxide induced failure in polycarbonate. J. Mater. Sci. 30 (1995) 4435–4445CrossRefGoogle Scholar
  24. [24]
    Hashimoto, M., Takadama, H., Mizuno, M., Kokubo, T.: Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment. Mater. Res. Bull. 41 (2006) 515–524CrossRefGoogle Scholar
  25. [25]
    Manzano, M., Salinas, A.J., Gil, F.J., Vallet-Regí M.: Mechanical properties of organically modified silicates for bone regeneration. J. Mater. Sci. Mater. Med. 20 (2009) 1795–1801CrossRefGoogle Scholar
  26. [26]
    Gil, F.J., Padros, A., Manero, J.M., Aparicio, C., Nilsson, M., Planell, J.A.: Growth of bio-active surfaces on titanium and its alloys for orthopaedic and dental implants. Mater. Sci. Eng. C. 22 (2002) 53–60CrossRefGoogle Scholar
  27. [27]
    Christodoulou, I., Buttery, L.D., Saravanapavan, P., Tai, G., Hench, L.L., Polak, J. M.: Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J. Biomed. Mater. Res. B Appl. Biomater. 74B (2005) [1] 529–537CrossRefGoogle Scholar
  28. [28]
    Christodoulou, I., Buttery, L.D., Tai, G., Hench, L.L., Polak, J.M.: Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S gel-glass ionic dissolution products. J. Biomed. Mater. Res. B Appl. Biomater. 77B (2006) [2] 431–446CrossRefGoogle Scholar
  29. [29]
    Bielby, R.C., Christodoulou, I.S., Pryce, R.S., Radford, W.J., Hench, L.L., Polak, J.M.: Time-and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng. 10 (2004) [7–8] 1018–1026CrossRefGoogle Scholar
  30. [30]
    Ternane, R., Boulon, G., Guyot, Y., Cohen-Adad, M.T., Trabelsi-Ayedi, M., Kbir-Ariguib, N.: Crystal growth, structural and spectroscopic characterization of undoped and Yb3+-doped oxyboroapatite fibers. Optical Mater. 22 (2003) [2] 117–128CrossRefGoogle Scholar
  31. [31]
    Yamamuro, T., Hench, L.L., Wilson, J.: Handbook of bioactive ceramics. CRC Press, Boca Raton, FL, USA, (1990), ISBN: 9780849332425Google Scholar
  32. [32]
    Beherei, H.H., Mohamed, K.R., El-Bassyouni, G.T.: Fabrication and characterization of bioactive glass (45S5) / titanium biocomposites. Ceram. Internat. 35 (2009) [5] 1991–1997CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • S. M. Naga
    • 1
    Email author
  • M. M. S. Wahsh
    • 1
  • Abeer M. El-Kady
    • 2
  • H. I. E. Asaker
    • 3
  1. 1.Department of CeramicsNational Research CenterCairoEgypt
  2. 2.Department of BiomaterialsNational Research CenterCairoEgypt
  3. 3.Department of PhysicsEl Azhar UniversityCairoEgypt

Personalised recommendations