Advertisement

Interceram - International Ceramic Review

, Volume 64, Issue 4–5, pp 214–218 | Cite as

Effect of Mineralizers and Reaction Conditions on the Formation of Cristobalite

  • Yun Lei
  • Yue He
  • Feifei Chen
  • Jun Xu
Special Technologies

Abstract

Crystalline silica experience phase transformation from quartz to cristobalite upon heat treatment. The influence of mineralizer types and reaction conditions on the crystallinity of cristobalite was investigated. The results show that the calcination temperature and the holding time have an effect on the phase transformation of cristobalite in the presence of mineralizers.

Keywords

quartz cristobalite mineralizer phase transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fang, Y., Li, L., Xiao, Q., Chen, X.M.: Preparation and microwave dielectric properties of cristobalite ceramics. Ceramics International 38 (2012) [6] 4511–4515CrossRefGoogle Scholar
  2. [2]
    Tong, Q.F., Wang, J.Y., Li, Z.P., Zhou, Y.C.: Preparation and properties of Si2N2O/beta-cristobalite composites. Journal of the European Ceramic Society 28 (2008) [6] 1227–1234CrossRefGoogle Scholar
  3. [3]
    Zawrah, M.F., Hamzawy, E.M.A.: Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites. Ceramics International 28 (2002) [2] 123–130CrossRefGoogle Scholar
  4. [4]
    Janko, M., McCrae, R.E., O’Donnell, J. F.: Occupational exposure and analysis of microcrystalline cristobalite in mullite operations. American Industrial Hygiene Association Journal 50 (1989) [9] 460–465CrossRefGoogle Scholar
  5. [5]
    San, O., Ozgur, C.,: Investigation of a high stable beta-cristobalite ceramic powder from CaO-Al2O3-SiO2 system. Journal of the European Ceramic Society 29 (2009) [14] 2945–2949CrossRefGoogle Scholar
  6. [6]
    Fubini, B., Zanetti, G., Altilia, S.: Relationship between surface properties and cellular responses to crystalline silica: studies with heat-treated cristobalite. Chemical research in toxicology 12 (1999) [8] 737–745CrossRefGoogle Scholar
  7. [7]
    Ansari, S., Varghese, J.M., Dayas, K.R.: Polydimethylsiloxane-cristobalite composite adhesive system for aerospace applications. Polymers for Advanced Technologies 20 (2009) [5] 459–465CrossRefGoogle Scholar
  8. [8]
    Correcher V., Garcia-Guinea J., Bustillo M.A., Garcia R.: Study of the thermoluminescence emission of a natural alpha-cristobalite. Radiation Effects and Deffects in Solids 164 (2009) [1] 59–67CrossRefGoogle Scholar
  9. [9]
    Kimizuka, H., Ogata, S., Shibutani, Y.: High-pressure elasticity and auxetic property of alpha-cristobalite. Materials Transactions 46 (2005) [6] 1161–1166CrossRefGoogle Scholar
  10. [10]
    Takada, A., Richet, P., Catlow, C.R.A., Price, G.D.: Molecular dynamics simulation of temperature-induced structural changes in cristobalite, coesite and amorphous silica. Journal of Non-Crystalline Solids 354 (2008) [2–9] 181–187CrossRefGoogle Scholar
  11. [11]
    Dubrovinsky, L.S., Dubrovinskaia, N.A., Prakapenka, V., Seifert, F., Langenhorst, F., Dmitriev, V., Weber, H.P., Le Bihan, T.: A class of new high-pressure silica polymorphs. Physics of the Earth and Planetary Interiors 143 (2004) 231–240CrossRefGoogle Scholar
  12. [12]
    Wu, S.W., Wong, D.S.H., Lu, S.Y.: Size effects on silica polymorphism, Journal of the American Ceramic Society 85 (2002) [10] 2590–2592CrossRefGoogle Scholar
  13. [13]
    Yamahara, K., Okazaki, K., Kawamura, K.: Molecular dynamics study of the thermal behaviour of silica glass/melt and cristobalite. Journal of Non-Crystalline Solids 291 (2001) [1–2] 32–42CrossRefGoogle Scholar
  14. [14]
    Dera, P., Lazarz, J.D., Prakapenka V.B., Barkley, M., Downs, R.T.: New insights into the high-pressure polymorphism of SiO2 cristobalite. Physics and Chemistry of Materials 38 (2011) [7] 517–529Google Scholar
  15. [15]
    Dubrovinsky, L.S., Dubrovinskaia, N.A, Saxena, S.K., Tutti, F., Rekhi, S., Le Bihan, T., Shen, G.Y., Hu, J.: Pressure-induced transformations of cristobalite. Chemical Physics Letters 333 (2001) [3–4] 264–270CrossRefGoogle Scholar
  16. [16]
    Prokopenko, V.B., Dubrovinsky, L.S., Dmitriev, V., Weber, H.P.: In situ characterization of phase transitions in cristobalite under high pressure by Raman spectroscopy and X-ray diffraction. Journal of Alloys and Compounds 327 (2001) [1–2] 87–95CrossRefGoogle Scholar
  17. [17]
    Donadio, D., Martonak, R., Raiteri, P., Parrinello, M.: Influence of temperature and anisotropic pressure on the phase transitions in alpha-cristobalite. Physical Review Letters 100 (2008) [16] 165502CrossRefGoogle Scholar
  18. [18]
    Yu, Y., Ruan, Y.Z., Lin, C.Y., Wang, C.Y.: Researches on crystal structure of fine silicon powder recollected from silicon-iron production at different temperature. Chinese Journal of Structural Chemistry 23 (2004) [3] 306–311Google Scholar
  19. [19]
    Zhu, Y., Yanagisawa, K., Onda, A., Kajiyoshi, K.: The preparation of nano-crystallized cristobalite under hydrothermal conditions. Journal of Materials Science 40 (2005) [14] 3829–3831CrossRefGoogle Scholar
  20. [20]
    Kobayashi, Y., Ohira, O., Isoyama, H.: Effect of cristobalite formation on bending strength of alumina-strengthened porcelain bodies, Journal of the Ceramic Society of Japan 111 (2003) [2] 122–125CrossRefGoogle Scholar
  21. [21]
    Wells, S.A., Dove, M.T., Tucker, M.G., Trachenko, K.: Real-space rigid-unit-mode analysis of dynamic disorder in quartz, cristobalite and amorphous silica. Journal of Physics-Condensed Matter 14 (2002) [18] 4645–4657CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.School of Resource and Environmental EngineeringWuhan University of TechnologyWuhan, HubeiChina

Personalised recommendations