Interceram - International Ceramic Review

, Volume 64, Issue 4–5, pp 193–199 | Cite as

A Comparison of Al(OH)3 and Mg(OH)2 as Inorganic Porogenic Agents for Alumina

  • R. SalomãoEmail author
  • A. D. V. Souza
  • P. H. L. Cardoso
Review Papers


Castable porous ceramics combine the high refractoriness of ceramics, the useful characteristics of porous materials and the straightforward installation of castable systems. In this study, particles of aluminium hydroxide (Al(OH)3) and magnesium hydroxide (Mg(OH)2) of similar average size were added separately to an alumina castable (up to 67 vol.-%). During thermal treatment (1100–1500°C), variations occurred in their porosity levels, mechanical properties, phase composition and microstructure. These were related to physical-chemical changes and Al2O3-MgO solid-state reactions. Both systems have potential to be technologically useful. AH-based structures showed intermediate levels of porosity (around 60%) and higher compression strength (above 10 MPa), which enable them to be employed as sintered lightweight aggregates for refractory insulating mortars. The MH-based castables, on the other hand, exhibited higher porosity levels (above 60%) and excellent dimensional stability. They can therefore be used as primary thermal insulators for long-life services at steelmaking, cement production and petrochemical plants.


porous ceramics alumina aluminium hydroxide magnesium hydroxide spinel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Studart, A.R., Gunzenbach, U.T., Tervoot, E., Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89 (2006) [6] 1771–1789CrossRefGoogle Scholar
  2. [2]
    Souza, A.D.V., Sousa, L.L., Fernandes, L., Cardoso, P.H.L., Salomão, R.: Al2O3-Al(OH)3-Based castable porous structures. J. Eur. Ceram. Soc. 35 (2015) [6] 1943–1954CrossRefGoogle Scholar
  3. [3]
    Nishikawa, A.: Technology of monolithic refractories. Tokyo: Technical Report No. 33-7, PLIBRICO Japan Co. Ltd. (1984) 98–101Google Scholar
  4. [4]
    Salomão, R., Villas Boas, M.O.C., Pandolfelli, V.C.: Porous alumina-spinel ceramics for high temperature applications. Ceram. Inter. 37 (2011) [7] 1393–1399CrossRefGoogle Scholar
  5. [5]
    Sousa, L.L., Souza, A.D.V., Fernandes, L, Arantes, V.L., Salomão, R.: Development of densification-resistant castable porous structures form in situ mullite. Ceram. Inter. 41 (2015) [8] 9443–9454CrossRefGoogle Scholar
  6. [6]
    Lyckfeldt, O., Ferreira, J.M.F.: Processing of porous ceramics by starch consolidation. J. Eur. Ceram. Soc. 18 (1998) [2] 131–140CrossRefGoogle Scholar
  7. [7]
    Deng, Y., Fukasawa, T., Ando, M.: Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide J. Am. Ceram. Soc. 84 (2001) [11] 2638–2644CrossRefGoogle Scholar
  8. [8]
    Ortega, F.S., Sepulveda, P., Pandolfelli, V.C.: Monomer systems for the gelcasting of foams. J. Eur. Ceram. Soc. 22 (2002) [9–10] 1395–1401CrossRefGoogle Scholar
  9. [9]
    Dhara, S., Bhargava, P.: A simple direct casting route to ceramic foams. J. Am. Ceram. Soc. 86 (2003) [10] 1645–1650CrossRefGoogle Scholar
  10. [10]
    Tang, F., Fudozi, H., Sakka, Y.: Fabrication of macroporous alumina with tailored porosity. J. Am. Ceram. Soc. 86 (2003) [12] 2050–2054CrossRefGoogle Scholar
  11. [11]
    Ortega, F.S., Valenzuela, F.A.O., Scurachio, C.H., Pandolfelli, V.C.: Alternative gelling agents for the gelcasting of ceramic foams. J. Eur. Ceram. Soc. 23 (2003) [1] 75–80CrossRefGoogle Scholar
  12. [12]
    Hotta, Y., Alberius, P.C.A., Bergstrom, L.: Coated polystyrene particles as templates for ordered macroporous silica structure with controlled wall thickness. J. Mater. Chem. 13 (2003) [3] 496–501CrossRefGoogle Scholar
  13. [13]
    Salomão, R., Brandi, J.: Filamentous alumina-chitosan porous structures produced by gelcasting. Ceram. Inter. 39 (2013) [7] 7751–7757CrossRefGoogle Scholar
  14. [14]
    Salomão, R., Brandi, J.: Macrostructures with hierarchical porosity produced from Al2O3-Al(OH)3-chitosan wet-spun fibers. Ceram. Inter. 39 (2013) [7] 8227–8235CrossRefGoogle Scholar
  15. [15]
    Salomão, R., Cardoso, P.H., Brandi, J.: Gelcasting porous alumina beads of tailored shape and porosity. Ceram. Inter. 40 (2014) [10B] 16595–16601CrossRefGoogle Scholar
  16. [16]
    Deng, Z.Y., Fukasawa, T., Ando, M.: High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3. J. Am. Ceram. Soc. 84 (2001) [3] 485–491CrossRefGoogle Scholar
  17. [17]
    Bhattacharya, I.N., Das, S.C., Mukherjee, P.S., Paul, S., Mitra, P.K.: Thermal decomposition of precipitated fine aluminium trihydroxide. Scandinavian J. Metal. 33 (2004) [4] 211–219CrossRefGoogle Scholar
  18. [18]
    Gan, B.K., Madsen, I.C., Hockridge, J.G.: In situ X-ray diffraction of the transformation of gibbsite to alpha-alumina through calcination: effect of particle size and heating rate. J. Appl. Crystallography 42 (2009) [4] 697–705CrossRefGoogle Scholar
  19. [19]
    Souza, A.D.V., Arruda, C.C., Fernandes, L., Antunes, M.L.P., Kiyohara, P.K., Salomão, R.: Characterization of aluminum hydroxide Al(OH)3 for its use as a porogenic agent in castable ceramics. J. Eur. Ceram. Soc. 35 (2015) [2] 803–812CrossRefGoogle Scholar
  20. [20]
    Salomão, R., Milena, L.M., Wakamatsu, M.H., Pandolfelli, V.C.: Hydrotalcite synthesis via co-precipitation reactions using MgO and Al(OH)3 precursors. Ceram. Inter. 37 (2011) [8] 3063–3070CrossRefGoogle Scholar
  21. [21]
    Domínguez, C., Chevalier, J., Torrecillas, R., Fantozzi, G.: Microstructure development in calcium hexaluminate. J. Eur. Ceram. Soc. 21 (2001) [3] 381–387CrossRefGoogle Scholar
  22. [22]
    Fernandes, L., Arruda, C.C., Souza, A.D.V., Salomão, R.: Characterization of synthetic amorphous silica (SAS) used in the ceramic industry. Interceram 63 (2014) [4] 220–224Google Scholar
  23. [23]
    Shah, S.R., Chokshi, A.H., Raj, R.: Porous Al2O3-Spinel based polycrystals that resist free-sintering. J. Am. Ceram. Soc. 91 (2008) [10] 3451–3454CrossRefGoogle Scholar
  24. [24]
    Braulio, M.A.L., Castro, J.F.R., Pagliosa, C., Bittencourt, L.R.M., Pandolfelli, V.C.: From macro to nanomagnesia: designing the in situ spinel expansion. J. Am. Ceram. Soc. 91 (2009) [9] 3090–3093CrossRefGoogle Scholar
  25. [25]
    Salomão, R., Pandolfelli, V.C.: Microsilica addition as an antihydration technique for magnesia-containing refractory castables. Am. Ceram. Soc. Bull. 86 (2007) [6] 9301–9309Google Scholar
  26. [26]
    Schneider, H., Schreuer, J., Hildman, B.: Structure and properties of mullite — a review. J. Eur. Ceram. Soc. 28 (2008) [2] 329–344CrossRefGoogle Scholar
  27. [27]
    Kitamura, A., Onizuka, K., Tanaka, K.: Hydration characteristics of magnesia. Taikabutsu Overseas 16 (1995) [3] 3–11Google Scholar
  28. [28]
    Salomão, R., Bittencourt, L.R.M., Pandolfelli, V.C.: A novel approach for magnesia hydration assessment in refractory castables. Ceram. Inter. 33 (2007) [5] 803–810CrossRefGoogle Scholar
  29. [29]
    Salomão, R., Arruda, C.C., Souza, A.D.V., Fernandes, L.: Novel insights into MgO hydroxylation: Effects of testing temperature, samples’ volume and solid load. Ceram. Inter. 40 (2014) [9B] 14809–14815CrossRefGoogle Scholar
  30. [30]
    Salomão, R., Arruda, C.C., Kawamura, M.A.: A systemic investigation on the hydroxylation behavior of caustic magnesia and magnesia sinter. Ceram. Inter. In Press, corrected proof, available online 10 July 2015Google Scholar
  31. [31]
    Ismael, M.R., Salomão, R., Pandolfelli, V.C.: Refractory castables based on colloidal silica and hydratable alumina. Am. Ceram. Soc. Bull. 86 (2007) [9] 58–61Google Scholar
  32. [32]
    Bayley, J.T., Russell Jr., R.: Sintered spinel ceramics Am. Ceram. Soc. Bull. 47 (1968) [11] 1025–1029Google Scholar
  33. [33]
    Bayley, J.T., Russell Jr., R.: Preparation and properties of dense spinel ceramics in the MgAl2O4-Al2O3 system. Trans. Brit. Ceram. Soc. 68 (1969) [4] 159–164Google Scholar
  34. [34]
    Bayley, J.T., Russell Jr., R.: Magnesia-rich MgAl2O4 spinel ceramics Am. Ceram. Soc. Bull. 50 (1971) [5] 493–496Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • R. Salomão
    • 1
    Email author
  • A. D. V. Souza
    • 1
  • P. H. L. Cardoso
    • 1
  1. 1.Materials Engineering Department, São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil

Personalised recommendations