Interceram - International Ceramic Review

, Volume 64, Issue 3, pp 100–103 | Cite as

Research Progress in Preparation of Porous Ceramics

  • Xiangong Deng
  • Junkai Wang
  • Zhong Huang
  • Wanguo Zhao
  • Faliang Li
  • Haijun ZhangEmail author
Review Papers


Porous ceramics have been extensively studied during the last two decades because of their potential application in the fields of thermal insulators, gas filters, catalytic supports, separation membranes, kiln furniture, and biomedical substitutes for bone and teeth. The properties of porous ceramics are highly dependent on their method of preparation. This mini-review summarizes recent developments in innovative fabrication of porous ceramics such as three-dimensional printing, molten salt synthesis, and the sacrificial template and replica methods. Finally, we conclude with our personal perspectives and recommendations for future research in porous ceramics.


porous ceramics three-dimensional printing molten salt method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hou, Z.G., Du, H.Y., Liu, J.C., Hao, R.H., Dong, X., Liu, M.X.: Fabrication and properties of mullite fiber matrix porous ceramics by a TBA-based gel-casting process. J. Eur. Ceram. Soc. 33 (2013) 717–725CrossRefGoogle Scholar
  2. [2]
    Li, J.F., Lin, H., Li, J.B.: Factors that influence the flexural strength of SiC-based porous ceramics used for hot gas filter support. J. Eur. Ceram. Soc. 31 (2011) 825–831CrossRefGoogle Scholar
  3. [3]
    Hu, X.J., Yu, J., Song, J., Wang, X.G., Huang, Y.: Toward low-cost Pd/ceramic composite membranes for hydrogen separation: A case study on reuse of the recycled porous Al2O3 substrates in membrane fabrication. Int. J. Hydrogen Energy 36 (2011) 15794–15802CrossRefGoogle Scholar
  4. [4]
    Fadli, A., Sopyan, I.: Porous ceramics with controllable properties prepared by protein foaming-consolidation method. J. Porous Mater. 18 (2011) 195–203CrossRefGoogle Scholar
  5. [5]
    Yang, Y., Shimai, S., Sun, Y., Dong, M.J., Kamiya, H., Wang, S.W.: Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming. Mater. Res. Soc. 28 (2013) 2012–2016CrossRefGoogle Scholar
  6. [6]
    Kocjan, A., Shen, Z.: Colloidal processing and partial sintering of high-performance porous zirconia nanoceramics with hierarchical heterogeneities. J. Eur. Ceram. Soc. 33 (2013) 3165–3176CrossRefGoogle Scholar
  7. [7]
    Chen, F., Yang, Y., Shen, Q., Zhang, L.M.: Macro/micro structure dependence of mechanical strength of low temperature sintered silicon carbide ceramic foams. Ceram. Int. 38 (2012) 5223–5229CrossRefGoogle Scholar
  8. [8]
    Liu, R.P., Wang, C.G.: Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. J. Eur. Ceram. Soc. 33 (2013) 1859–1865CrossRefGoogle Scholar
  9. [9]
    Mao, X.J., Shimai, S., Wang, S.W.: Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28 (2008) 217–222CrossRefGoogle Scholar
  10. [10]
    Tang, Y.F., Zhao, K., Hu, L., Wu, Z.X.: Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram. Int. 39 (2013) 9703–9707CrossRefGoogle Scholar
  11. [11]
    Cima, M., Sachs, E., Fan, T.L., Bredt, J.F., Michaels, S.P., Khanuja, S., Lauder, A., Lee, S.J., Brancazio, D., Curodeau, A., Tuerck, H.: Massachusetts Institute of Technology: Three-dimensional printing techniques, US Patent 5387380, published 7 February 1995Google Scholar
  12. [12]
    Sachs, E.M., Haggerty, J.S., Cima, M.J., Williams, P.A.: Massachusetts Institute of Technology: Three-dimensional printing techniques, US Patent 5204055, published 20 April 1993Google Scholar
  13. [13]
    Lam, C.X.F., Mo, X.M., Teoh, S.H., Hutmacher, D.W.: Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 20 (2002) 49–56CrossRefGoogle Scholar
  14. [14]
    Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomäki M.: A review of rapid prototyping techniques for tissue engineering purposes. Annals of medicine 40 (2008) 268–280CrossRefGoogle Scholar
  15. [15]
    Li, X.M., Zhang, L.T., Yin, X.W.: Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3D printing and pressureless sintering. Scripta Mater. 67 (2012) 380–383CrossRefGoogle Scholar
  16. [16]
    Zocca, A., Gomes, C.M., Bernardo, E., Müller, R., Günster, J., Colombo, P.: LAS glass-ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33 (2013) 1525–1533CrossRefGoogle Scholar
  17. [17]
    Yoo, J.J., Kim, H.J., Seo S.M., Oh, K.S.: Preparation of a hemiporous hydroxyapatite scaffold and evaluation as a cell-mediated bone substitute. Ceram. Int. 40 (2014) 3079–3087CrossRefGoogle Scholar
  18. [18]
    An, S.H., Matsumoto, T., Miyajima, H., Nakahira, A., Kim, K.H., Imazato, S.: Porous zirconia/ hydroxyapatite scaffolds for bone reconstruction. Dent. Mater. 28 (2012) 1221–1231CrossRefGoogle Scholar
  19. [19]
    Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4 (2005) 518–524CrossRefGoogle Scholar
  20. [20]
    Inzana, J. A., Olvera, D., Fuller, S.M., Kelly, J.P., Graeve, O.A., Schwarz, E.M., Kates, S.L., Awad, H.A.: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 13 (2014) 4026–4034CrossRefGoogle Scholar
  21. [21]
    Butscher, A., Bohner, M., Doebelin, N., Hofmann, S., Müller, R.: New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 9 (2013) 9149–9158CrossRefGoogle Scholar
  22. [22]
    Bergmann, C., Linder, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R.: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30 (2010) 2563–2567CrossRefGoogle Scholar
  23. [23]
    Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B 74B (2005) 782–788CrossRefGoogle Scholar
  24. [24]
    Suwanprateeb, J., Sanngam, R., Panyathanmaporn, T.: Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Mater. Sci. Eng. C 30 (2010) 610–617CrossRefGoogle Scholar
  25. [25]
    Tarafder, S., Balla, V.K., Davies, N.M., Bandyopadhyay A., Bose, S.: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. 7 (2013) 631–641CrossRefGoogle Scholar
  26. [26]
    Fielding, G.A., Bandyopadhyay, A., Bose, S.: Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28 (2012) 113–122CrossRefGoogle Scholar
  27. [27]
    Santos, C.F.L., Silva, A.P., Lopes, L., Pires, I., Correia, I.J.: Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater. Sci. Eng. C 32 (2012) 1293–1298CrossRefGoogle Scholar
  28. [28]
    Yoon, K.H., Cho, Y. S., Kang, D.H.: Molten salt synthesis of lead-based relaxors. J. Mater. Sci. 33 (1998) 2977–2984CrossRefGoogle Scholar
  29. [29]
    Zhang, S.W., Yuan, L., Yu, J.: Low temperature molten salt-mediated reparation of porous ceramics. Intercream 58 (2009) 374–377Google Scholar
  30. [30]
    Zhu, H.X., Ding, J., Deng, C.J., Zhang, S.W.: Low-temperature preparation of biomorphic TiC/C ceramic in molten salt media. Adv. Mater. Res. 79 (2009) 1371–1374CrossRefGoogle Scholar
  31. [31]
    Ding, J., Deng, C.J., Yuan, W.J., Zhu, H.X., Li, J.: Preparation of porous TiC/C ceramics using wooden template in molten salt media. Adv. Appl. Ceram. 112 (2013) 131–135CrossRefGoogle Scholar
  32. [32]
    Chung, R.J., Hsieh, M.F., Huang, K.C., Chou, F.I., Perng, L.H.: Preparation of porous HA/beta-TCP biphasic bioceramic using a molten salt process. Key Eng. Mater. 309 (2006) 1075–1078CrossRefGoogle Scholar
  33. [33]
    Guo, X.Z., Yang, H., Huang, Y.Y., Zhang, L.J.: Microstructure and properties of pore-created SiC ceramics with calcium chloride as pore former. Ceram. Int. 39 (2013) 1299–1305CrossRefGoogle Scholar
  34. [34]
    Topates, G., Petasch, U., Adler, J., Kara, F., Mandal, H.: Production and permeability of porous Si3N4 ceramics produced by starchaddition. J. Asian Ceram. Soc. 1 (2013) 257–261CrossRefGoogle Scholar
  35. [35]
    Guo, X.S., Zhou, Z.F., Ma, G.L., Wang, S. M., Zhao, S., Zhang, Q.: Effect of forming process on the integrity of pore-gradient Al2O3 ceramic foams by gelcasting. Ceram. Int. 38 (2012) 713–719CrossRefGoogle Scholar
  36. [36]
    Feng, Y., Wang, K., Yao, J.F., Webley, P.A., Smart, S., Wang, H.: Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. Ceram. Int. 39 (2013) 7551–7556CrossRefGoogle Scholar
  37. [37]
    Carlos, M.O., Garcia, J.R., Oliveira, I.R., Salomao, R., Pandolfelli, V.C.: Porous ceramics through heterocoagulation process (in Portuguese). Ceramica 318 (2005) 78–84CrossRefGoogle Scholar
  38. [38]
    Schwartzwalder, K., Somers, A.V., Gen Motors Corp.: Method of Making Porous Ceramic Articles, US Patent 3090094, published 21 May 1963Google Scholar
  39. [39]
    Gauckler, L.J., Waeber, M.M., Conti, C., Jacobduliere, M.: Ceramic foam for molten-metal filtration. J. Metals 37 (1985) 47–50Google Scholar
  40. [40]
    Yao, X.M., Yang, Y., Liu, X.J., Huang, Z.G.: Effect of recoating slurry compositions on the microstructure and properties of SiC reticulated porous ceramics. J. Eur. Ceram. Soc. 33 (2013) 2909–2914CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • Xiangong Deng
    • 1
    • 2
  • Junkai Wang
    • 1
  • Zhong Huang
    • 1
  • Wanguo Zhao
    • 1
  • Faliang Li
    • 1
  • Haijun Zhang
    • 1
    Email author
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Luoyang Cen-Lon Ceramics Company Ltd.LuoyangChina

Personalised recommendations