Advertisement

Large-Scale Preparation of Carbon Nanotubes via Catalytic Pyrolysis of Phenolic Resin at Low Temperature

  • Junkai Wang
  • Xiangong Deng
  • Haijun Zhang
  • Feng Cheng
  • Faliang Li
  • Shaowei Zhang
Review Papers

Abstract

Carbon nanotubes (CNTs) were prepared through catalytic pyrolysis of phenol resin at 600°C under Ar atmosphere using ferric nitrate as the catalyst precursor. The structure and morphology of pyrolyzed resin were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the optimum growth temperature of the CNTs is 600°C, and other heating temperatures lower or higher than 600°C are not suitable for large-scale preparation of CNTs. Moreover, the ferric nitrate experienced the following phase transformation: Fe3O4 at 400°C, catalytically active Fe at 600°C and catalytically inactive (Fe, C) carbide at 800 and 1000°C. Based on the SEM and TEM results, a four-step mode of Vapour-solid-solid (VSS) and tip growth mechanism was revealed for the formation of CNTs from catalytic pyrolysis of phenol resin.

Keywords

carbon nanotubes ferric nitrate pyrolysis phenolic resin catalytic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon Nanotubes — The Route Toward Applications. Science 297 (2002) [5582] 787–792CrossRefGoogle Scholar
  2. [2]
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354 (1991) [6348] 56–58CrossRefGoogle Scholar
  3. [3]
    Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters 243 (1995) [1–2] 49–54CrossRefGoogle Scholar
  4. [4]
    Tibbetts, G.G.: Why are carbon filaments tubular? Journal of Crystal Growth 66 (1984) [3] 632–638CrossRefGoogle Scholar
  5. [5]
    Ramakrishnan, S., Jelmy, E.J., Dhakshnamoorthy, M., Rangarajan, M., Kothurkar, N.: Synthesis of Carbon Nanotubes from Ethanol Using RF-CCVD and Fe-Mo Catalyst. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 44 (2014) [6] 873–876CrossRefGoogle Scholar
  6. [6]
    Tian, Y., Hu, Z., Yang, Y., Chen, X., Ji, W., Chen, Y.: Thermal analysis-mass spectroscopy coupling as a powerful technique to study the growth of carbon nanotubes from benzene. Chemical Physics Letters 388 (2004) [4–6] 259–262CrossRefGoogle Scholar
  7. [7]
    Li, Y., Li, X.K., Liu, L.: The production of CNTs by catalytic decomposition of different source gases. New Carbon Materials 19 (2004) [4] 298–302Google Scholar
  8. [8]
    Shaikjee, A., Coville, N.J.: The role of the hydrocarbon source on the growth of carbon materials. Carbon 50 (2012) [10] 3376–3398CrossRefGoogle Scholar
  9. [9]
    Simate, G., et al.: The production of carbon nanotubes from carbon dioxide: Challenges and opportunities. Journal of Natural Gas Chemistry 19 (2010) [5] 453–460CrossRefGoogle Scholar
  10. [10]
    Liu, L., Fan, S.: Isotope labeling of carbon nanotubes and formation of 12C–13C nanotube junctions. Journal of the American Chemical Society 123 (2001) [46] 11502–11503CrossRefGoogle Scholar
  11. [11]
    Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., et al.: Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters 315 (1999) [1–2] 25–30CrossRefGoogle Scholar
  12. [12]
    José-Yacamán, M., Miki-Yoshida, M., Rendón, L., Santiesteban, J.G.: Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters 62 (1993) [2] 202–204CrossRefGoogle Scholar
  13. [13]
    Zhu, B., Wei, G., Li, X., Ma, Z., Wei, Y.: Preparation and growth mechanism of carbon nanotubes via catalytic pyrolysis of phenol resin. Materials Research Innovations 18 (2013) [4] 267–274CrossRefGoogle Scholar
  14. [14]
    Hernadi, K., Fonseca, A., Nagy, J.B., Siska, A., Kiricsi, I.: Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Applied Catalysis A: General 199 (2000) [2] 245–255CrossRefGoogle Scholar
  15. [15]
    Klinke, C., Bonard, J.-M., Kern, K.: Comparative study of the catalytic growth of patterned carbon nanotube films. Surface Science 492 (2001) [1–2] 195–201CrossRefGoogle Scholar
  16. [16]
    Kong, J., Cassell, A.M., Dai, H.: Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters 292 (1998) [4–6] 567–574CrossRefGoogle Scholar
  17. [17]
    Stamatin, I., Morozan, A., Dumitru, A., Ciupina, V., Prodan, G., Niewolski, J., et al.: The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Physica E: Low-dimensional Systems and Nanostructures 37 (2007) [1–2] 44–48CrossRefGoogle Scholar
  18. [18]
    Quan, C., Li, A., Gao, N.: Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. Journal of Hazardous Materials 179 (2010) [1–3] 911–917CrossRefGoogle Scholar
  19. [19]
    Hernadi, K., Fonseca, A., Nagy, J.B., Bernaerts, D., Lucas, A.A.: Fe-catalyzed carbon nanotube formation. Carbon 34 (1996) [10] 1249–1257CrossRefGoogle Scholar
  20. [20]
    Herreyre, S., Gadelle, P., Moral, P., Millet, J.M.M.: Study by mössbauer spectroscopy and magnetization measurement of the evolution of iron catalysts used in the disproportionation of CO. Journal of Physics and Chemistry of Solids 58 (1997) [10] 1539–1545CrossRefGoogle Scholar
  21. [21]
    Nobuyoshi Y., Masatoshi, Y., Takayuki, A., Seiji, A., Yoshikazu, N.: Quantitative Analysis of the Magnetic Properties of Metal-Capped Carbon Nanotube Probe. Japanese Journal of Applied Physics 41 (2002) [75] 5013–5016Google Scholar
  22. [22]
    Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., et al.: In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano letters 7 (2007) [3] 602–608CrossRefGoogle Scholar
  23. [23]
    Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., Homma, Y.: Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano letters 8 (2008) [7] 2082–2086CrossRefGoogle Scholar
  24. [24]
    Yoshida, H., Shimizu, T., Uchiyama, T., Kohno, H., Homma, Y., Takeda, S.: Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth. Nano letters 9 (2009) [11] 3810–3815CrossRefGoogle Scholar
  25. [25]
    Baker, R.T.K.: Catalytic growth of carbon filaments. Carbon 27 (1989) [3] 315–323CrossRefGoogle Scholar
  26. [26]
    Lin, M., Ying Tan, J.P., Boothroyd, C., Loh, K.P., Tok, E.S., Foo, Y.-L.: Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano letters 6 (2006) [3] 449–452CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • Junkai Wang
    • 1
  • Xiangong Deng
    • 1
  • Haijun Zhang
    • 1
  • Feng Cheng
    • 1
  • Faliang Li
    • 1
  • Shaowei Zhang
    • 1
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations